Маргарита Акулич - Искусственный интеллект и маркетинг
- Название:Искусственный интеллект и маркетинг
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785449053503
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маргарита Акулич - Искусственный интеллект и маркетинг краткое содержание
Искусственный интеллект и маркетинг - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если знания формализованы, они являются пригодными для индексирования и поиска на основе контента, интерпретации сценариев, поддержки клинических решений, обнаружения знаний с помощью автоматизированных рассуждений (вывод новых заявлений на основе явно заявленных знаний) и т. д. Видеорепортажи часто представляются в виде правил SWRL, их реально использовать, скажем, для автоматического создания субтитров для ограниченного видео.
Среди наиболее сложных проблем в представлении знаний следующие.
Определение по умолчанию и проблема квалификации. Многие вещи, которые люди знают, принимают форму «рабочих предположений». Например, если в разговоре появляется птица, люди обычно изображают животное размером с кулак, она поет и летит. Ни одна из этих вещей не относится ко всем птицам.
Джон МакКарти определил эту проблему в 1969 году как проблему квалификации: для любого правила здравого смысла, которое должны представлять исследователи AI, существует обычно огромное количество исключений. Почти нет ничего истинного или ложного в том, чего требует абстрактная логика. Исследованиями AI охватывается ряд решений этой проблемы.
Широта знаний здравого смысла . Число атомных фактов, известных среднему человеку, очень велико. Исследовательские проекты, пытающиеся построить полную базу знаний здравого смысла (например, Cyc), требуют огромного количества трудоемкой онтологической инженерии – они должны быть построены вручную с одной сложной концепцией за раз.
Основная цель состоит в том, чтобы компьютер понимал достаточно понятий, чтобы учился, читая из таких источников, как Интернет, и тем самым мог бы добавить к своей собственной онтологии.
Подсимвольная форма некоторого знания здравого смысла . Многое из того, что знают люди, не представлено в виде «фактов» или «заявлений», которые они могли бы выразить в устной форме. Например, мастер шахмат избежит определенной шахматной позиции, потому что он при ней «чувствует себя слишком разоблаченным», или искусствовед может взглянуть на статую и понять, что это подделка. Это бессознательные и субсимволические интуиции или тенденции в мозге человека. Знания, подобные этому, информируют, поддерживают и предоставляют контекст для символических, сознательных знаний. Как и в связанной с этим проблеме подсимвольных рассуждений, есть надежда, что вычислительный AI или статистический AI обеспечит способы представления такого рода знаний.
1.3 Планирование. Машинное обучение
Планирование

Иерархическая система управления представляет собой форму системы управления, в которой множество устройств и программного обеспечения расположены в иерархии.
Интеллектуальные агенты должны иметь возможность устанавливать цели и добиваться их. Им нужен способ визуализировать будущее – представления состояния мира, они должны иметь возможность делать прогнозы о том, как их действия изменят его, и иметь шанс делать выбор, максимизирующий полезность (или «ценность») доступных вариантов.
В классических задачах планирования агент может предположить, что он является единственной действующей в мире системой, позволяющей ему быть уверенным в последствиях своих действий. Однако, если агент не единственный актер, то от агента потребуется, чтобы он мог обосновать неопределенность. Это требует наличия агента, способного не только оценить свою среду и сделать прогнозы, но и оценить свои прогнозы, и адаптироваться на основе их оценки.
Многоагентным планированием используется сотрудничество и конкуренция многих агентов для достижения заданной цели. Возникающее поведение, такое как это, используется эволюционными алгоритмами и искусственным интеллектом.
Машинное обучение

Машинное обучение, являющееся фундаментальной концепцией исследований AI с момента его создания, занимается изучением компьютерных, автоматически улучшающихся благодаря опыту алгоритмов.
Под неконтролируемым обучением принято понимание способности нахождения шаблонов в потоке ввода. В него включается классификация и численная регрессия. Использование классификации служит определению того, к какой из категорий причисляется обучение. Классификация производится путем просмотра примеров из ряда категорий. Регрессию понимают как попытку создания функции, описывающей взаимосвязь между входами и выходами и предсказания изменений выходных данных при изменении данных входных.
В обучении для подкрепления агента вознаграждают за ответы, считающиеся хорошим, и наказывают за ответы, относящиеся к плохим. Агентом эта последовательность вознаграждений и наказаний используется для формирования стратегии работы в собственном проблемном пространстве.
Все типы обучения можно проанализировать с позиций теории принятия решений с использованием такого понятия, как утилита.
Если говорить о математическом анализе алгоритмов машинного обучения и их эффективности, это имеет отношение к теоретической информатике, известной как теория вычислительного обучения.
В рамках развития робототехники происходит разработка подходов к обучению, чтобы имело место развитие, содействующее накоплению роботами репертуара новых навыков благодаря автономному самопознанию, социальному взаимодействию с преподавателями-людьми и использованию механизмов наведения (использованию активного обучения, созревания, синергии двигателя и т. д.).
1.4 Обработка естественного языка. Восприятие машины и область робототехники
Обработка естественного языка

Дерево разбора представляет собой синтаксическую структуру предложения в соответствии с некоторой формальной грамматикой.
Обработка естественного языка дает машинам возможность читать и понимать человеческий язык. Достаточно мощная система обработки естественного языка позволит использовать пользовательские интерфейсы на естественном языке и получить знания непосредственно из письменных источников, таких как тексты новостей. Некоторые простые приложения обработки естественного языка включают в себя поиск информации, интеллектуальную обработку текста, ответы на вопросы и машинный перевод.
Читать дальшеИнтервал:
Закладка: