Анатолий Овчинников - Рассуждения об основах математики
- Название:Рассуждения об основах математики
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-96364-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Овчинников - Рассуждения об основах математики краткое содержание
Рассуждения об основах математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Пример 4. Геометрия Римана и расстояние между точками A и B . Как экспериментально определяется в геометрии расстояние между точками A и B ? Строится прямая (евклидова), проходящая через точки A и B и длина отрезка этой прямой между этими точками как раз и называется расстоянием между точками A и B . Но вот Риман говорит: «Проведем через точки A и B кривую, а длину этой кривой между точками A и B будем называть расстоянием между этими самыми точками. А эту кривую будем теперь называть прямой». Это типично нерациональное (иррациональное) осмысление экспериментального факта. В самом деле. Кривых между точками A и B можно построить сколько угодно и «расстояний» между ними будет сколько угодно. А вот прямую между двумя точками можно провести одну, и только одну. И это экспериментальный факт. Если принять определение расстояния между точками, следуя Риману, то такое расстояние становится бессмысленно измерять. Нет никакого смысла пытаться измерять расстояние между двумя неподвижными точками, если мы заведомо знаем, что оно может быть каким угодно. Иррациональность в определении расстояния между двумя точками по Риману возникает потому, что Риман (и его последователи) отождествляют совершенно два различных геометрических понятия: расстояние между точками A и B и, длина кривой между точками A и B . Для них это – одно и то же. Однако ни сам Риман, ни его последователи не привели никаких объяснений тому, почему они считают эти два различных понятия одним и тем же. Более того, таких объяснений мы никогда и не получим. Почему? Потому, что наше реальное пространство устроено так, что оно принципиально запрещает смешивать два разных понятия: расстояние между точками и длину кривой между точками. Это, фундаментальное свойство нашего реального пространства подтверждается многочисленными экспериментальными фактами (построениями геометра). Риман пренебрег этими экспериментальными фактами и построил геометрию, не существующую в реальном пространстве. Пренебрежение экспериментальными фактами это – типичная позиция математика-идеалиста.
Пример 5. Физика. Теория относительности – пример иррационального осмысления экспериментальных фактов. Как показано во второй главе книги [1], введение преобразований Лоренца в физику устраняет из геометрии аксиому неизменности геометрических объектов. А это, в свою очередь, лишает физика возможности проводить какие-либо измерения. Но разве нужна кому-нибудь такая физика (без измерений)? Ведь если ничего нельзя измерить, то ничего нельзя и проверить.
Пример 6. Физика. Гипотеза расширения Вселенной – пример иррационального осмысления экспериментальных фактов. Как показано в третьей главе книги [1], введение этой гипотезы равносильно отказу от принципа относительности в физике. А тогда какую физику нам следует изучать ту, в которой этот принцип есть или ту, в которой его нет? Наверно придется изучать обе эти физики. Тогда в каждой физической задаче будет иметься два ответа: один – когда в физике есть принцип относительности, другой – когда этого принципа в физике нет. И оба эти ответа будут соединяться союзом «или», что будет означать полную неопределенность. Разве это рационально? Конечно, нет. На основании приведенных здесь примеров, мы можем с достаточной степенью точности утверждать следующее: в геометрии, математике, физике рациональное осмысление экспериментальных фактов это – то же самое, что и научное их осмысление. В этой книге мы полагаем, что рациональное и научное осмысление экспериментальных фактов это – синонимы.
2. Существуют ли априорные истины?
В этом вопросе мы будем придерживаться материалистической позиции. Что является критерием истины? Критерием истины является практика. В математике и физике под «практикой» следует понимать экспериментальную проверку любого утверждения (подтверждение истинности утверждения опытными фактами). Но в таком случае словосочетание «априорная истина» становится совершенно нелепым. В самом деле. Пусть человек высказывает некоторое утверждение. Это утверждение может родиться в голове человека (в результате работы мозга) по различным причинам. Причиной может быть «априорная» (фантастическая) идея. Причиной может быть смесь опытных и фантастических фактов. Причиной может быть суждение по аналогии. Причиной может быть догадка, где все вышеперечисленное уже имеется (и так далее). Но это всего лишь причины появления утверждения. Но нас-то интересует не причина появления утверждения, а его истинность или ложность. Причина появления данного утверждения в этой ситуации становится не актуальной. Актуальной остается проверка на истинность или ложность. А такая проверка производится экспериментально. После такой проверки утверждение становится ложным или истинным и одновременно оно становится экспериментальным (то есть вытекающим из опыта).
Таким образом, никаких «априорных» истин не существует. Всякая истина, будучи проверяемая экспериментально, автоматически становится следствием экспериментальных фактов. Нам давно уже пора расстаться с мифом об «априорных» истинах. Миф об «априорности» геометрии и математики покоится на ложном утверждении; якобы аксиомы геометрии или математики невозможно проверить экспериментально. Это типичное суждение идеалиста-математика. Он путает понятие экспериментальной проверки с понятием идеальной проверки. Идеальных проверок не бывает (это закон природы); все проверки – экспериментальны, а потому всегда выполняются с некоторой (ограниченной) степенью точности. На самом деле мы проверяем и аксиомы и теоремы геометрии и математики ежедневно огромное количество раз (например, в инженерных расчетах). Еще ни один экспериментальный факт не дал нам никаких оснований для того, чтобы изменить какие-либо аксиомы евклидовой геометрии или математики.
Здесь особо хочется отметить, многим известную, экспериментальную проверку суммы углов треугольника, проведенную Гауссом в 1821 – 1823 годах [4, 319]. Гаусс измерил сумму углов в треугольнике (длины сторон которого – несколько десятков километров) и пришел к выводу, что нет никаких оснований менять евклидову геометрию на какую-то другую. Это – типичный материалистический подход к науке (критерий истины – практика). Добавим здесь ещё, что эфемериды планет вычисляются с применением евклидовой геометрии (и никакой другой). Эти вычисления и их сравнение с фактическим положением дел также не дают нам никаких оснований заменить евклидову геометрию какой-то другой.
3. Особенности описания математическим аппаратом реальной картины мира
Интервал:
Закладка: