Роберт Хейзен - Симфония № 6. Углерод и эволюция почти всего

Тут можно читать онлайн Роберт Хейзен - Симфония № 6. Углерод и эволюция почти всего - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Роберт Хейзен - Симфония № 6. Углерод и эволюция почти всего краткое содержание

Симфония № 6. Углерод и эволюция почти всего - описание и краткое содержание, автор Роберт Хейзен, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Роберт Хейзен – незаурядный ученый, меломан и успешный музыкант, и этим обусловлена структура его книги, повторяющая принципы построения симфонии. Ее лейтмотив – химический элемент № 6 в Периодической таблице, или углерод, без которого немыслима жизнь, с самого ее зарождения и до всего, что нас окружает в современном мире. Временной охват книги – чуть менее 14 млрд лет, от возникновения Вселенной до наших дней. И на протяжении практически всего этого времени углерод исполняет свою уникальную партию в симфонии эволюции. Глубинный углеродный цикл, минералогия углерода, вулканические газы, алмаз и графит, органическое топливо, нанотрубки, климат, ископаемые остатки животных и растений – вот лишь малая часть тем, затронутых в этой невероятно познавательной книге.

Симфония № 6. Углерод и эволюция почти всего - читать онлайн бесплатно ознакомительный отрывок

Симфония № 6. Углерод и эволюция почти всего - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роберт Хейзен
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задолго до первого поколения звезд единственным процессом образования атомов в истории Вселенной было уникальное мимолетное событие – 17-минутный всплеск ядерного творчества, названный нуклеосинтезом Большого взрыва, или НБВ [11] О нуклеосинтезе во время Большого взрыва см.: Carlos A. Bertulani, Nuclei in the Cosmos (Singapore: World Scientific, 2013). . Большой взрыв – исключительное, загадочное мгновение, случившееся 13,8 млрд лет назад, когда вся материя, и энергия, и сам космос внезапно возникли в одной точке, – дал начало расширению Вселенной, продолжающемуся до сих пор. Расширение означает охлаждение, а с охлаждением пришла череда уплотнений – физики называют это застыванием – каскадов преобразований, каждое из которых делало космос все более организованным и интересным.

Первыми из непостижимо горячего и плотного вихря сконденсировались элементарные частицы – кварки (строительные блоки атомных ядер) и лептоны (считайте, электроны). За первую секунду, когда температуры упали до невообразимых 100 трлн градусов, триплеты кварков соединились во множество протонов и нейтронов – также строительных блоков атомных ядер, причем протонов оказалось больше примерно в соотношении семь к одному. Секунды шли, Вселенная продолжала расширяться и охлаждаться.

На третьей минуте в быстро развивающейся Вселенной создались благоприятные условия для образования стабильных атомных ядер – различных комбинаций протонов и нейтронов, удерживаемых вместе ядерными силами. Впервые за всю (надо признать, короткую) историю космоса температуры значительно снизились до каких-нибудь 100 млрд градусов. Этого изменения оказалось достаточно для того, чтобы сформировавшиеся ядра оставались целыми. Количество отдельных протонов – ядер простых атомов водорода – по-прежнему преобладало в этой субстанции, подобно тому как водород преобладает и в наши дни. Но он не остался в одиночестве. Следующие 17 минут свободные нейтроны лихорадочно соединялись со всеми протонами, попадавшимися им на пути, и формировали тяжелый изотоп водорода, называемый дейтерием. Бóльшая часть атомов дейтерия затем попарно объединилась в наиболее распространенную разновидность (изотоп) гелия с двумя протонами и двумя нейтронами, известную как гелий-4. К тому моменту как Вселенной исполнилось приблизительно 20 минут, она охладилась достаточно, чтобы ядерный синтез двинулся дальше. Атомные соотношения стали более или менее постоянными. Самая упрощенная версия результатов НБВ во Вселенной выглядит так: около десяти водородных ядер на каждое ядро гелия-4 и немного дейтерия в остатке.

Это полезное упрощение, но история НБВ не так проста. Ядерные частицы (протоны и нейтроны) соединялись во всевозможные комбинации, формируя, помимо прочего, небольшое, но важное количество гелия-3 (два протона плюс нейтрон) и лития-7 (три протона плюс четыре нейтрона), а также более крупные нестабильные ядра, которые быстро распадались. На самом деле соотношения тех редких ядер гелия и лития, которые присутствуют в сегодняшней Вселенной, резко ограничивают варианты предположений о космической эволюции сразу же после Большого взрыва. В соответствии с основной версией космического происхождения, НБВ не произвел стабильных элементов тяжелее лития (третий элемент Периодической таблицы). То же относится и к углероду – шестому элементу.

В этом прелесть науки. «Не было углерода» в ее контексте не обязательно означает «совсем не было углерода». Лучше сказать, «не было значительного количества углерода», достаточного для того, чтобы влиять на последующее поведение звезд и галактик, которые должны были образоваться. Углерода недоставало для появления кристаллов, или атмосферы, или деревьев. Но так как наше исследование посвящено именно углероду, правду об образовании шестого элемента знать необходимо. Для нас появление даже одного атома углерода имеет космическое значение.

Критический интервал между 3-й и 20-й минутами после Большого взрыва был невообразимо буйным и напряженным – бурное время неконтролируемых ядерных взаимодействий и обменов с последующим появлением новых атомов. Почти все столкновения протонов и нейтронов заканчивались синтезом дейтерия или гелия, и лишь в очень незначительной доле ядерных реакций – особенно тех, что случались между более крупными фрагментами ядер уже ближе к более прохладному концу 17-минутного интервала, – образовались комбинации посложнее, в том числе и некоторые элементы тяжелее лития.

Вычисления, опубликованные в 2007 г. итальянским астрофизиком Фабио Иокко и его коллегами, представили более 100 правдоподобных цепочек ядерных реакций, которые ранее не учитывались, поскольку считались слишком невероятными, не говоря уже об их слишком высокой стоимости с точки зрения затрат времени суперкомпьютеров [12] См.: Fabio Iocco et al., “Primordial Nucleosynthesis: From Precision Cosmology to Fundamental Physics,” Physics Reports 472 (2008): 1–76. . Иокко сделал такой вывод: да, эти реакции маловероятны, но не невозможны. И углерод, и азот, и кислород – шестой, седьмой и восьмой элементы – все сформировались при НБВ. Их количество было слишком мало, чтобы значительно повлиять на последующую эволюцию Вселенной, но все же они образовались. Согласно вычислениям Иокко, приблизительно на каждые 4 500 000 000 000 000 000 (четыре с половиной квинтильона) ядер водорода появлялось одно ядро углерода-12 [13] Изотоп с шестью протонами и шестью нейтронами. – Прим. науч. ред. . Эта на первый взгляд несущественная доля была так мала, что позволила Иокко и его коллегам сделать следующий вывод: самые древние звезды развивались в свободной от металлов среде (металл для астрофизика означает любой элемент тяжелее гелия). То есть ученые опять утверждали, что Большой взрыв, по сути, углерода не произвел.

Но секундочку! В первичной, сразу после НБВ, Вселенной, по приблизительным расчетам, было как минимум 10 80(единица с 80 нулями) атомов водорода – сногсшибательно огромное число. В то же время на каждые несколько квинтильонов атомов водорода образовался один атом углерода – крошечная доля. Однако крошечная доля огромного числа – это очень большое число . Простое деление показывает, что Большой взрыв произвел более 10 64атомов углерода! Это количество представляет собой лишь малую долю массы Вселенной и лишь одну триллионную часть всех атомов углерода, обнаруженных во Вселенной сегодня, но первичных атомов углерода все же было много.

Где же находятся те 10 64атомов углерода в наши дни? Некоторые, безусловно, участвовали в создании первых поколений звезд, в циклах реакций ядерного синтеза, в ходе которых они преобразовались в другие, более тяжелые элементы. Другие атомы углерода Большого взрыва разлетелись и рассеялись по всей нынешней Вселенной в виде космической пыли и газа. Но огромные количества тех самых первых атомов углерода остались в нашем современном мире, и их не отличить от атомов, образовавшихся гораздо позже. Ваше тело состоит из более чем 10 24атомов углерода – 100 трлн трлн атомов шестого элемента. Отсюда следует, что триллионы этих атомов должны быть теми самыми ядрами углерода, которые появились еще тогда, в родовых муках НБВ, – атомами, неотличимыми от позднейших накоплений углерода, выкованного в звездах. То же самое можно сказать и о ваших основных атомах кислорода и азота, не говоря уже о первичном водороде, – обо всех элементах, необходимых для жизни.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роберт Хейзен читать все книги автора по порядку

Роберт Хейзен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Симфония № 6. Углерод и эволюция почти всего отзывы


Отзывы читателей о книге Симфония № 6. Углерод и эволюция почти всего, автор: Роберт Хейзен. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x