Роберт Хейзен - Симфония № 6. Углерод и эволюция почти всего
- Название:Симфония № 6. Углерод и эволюция почти всего
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9361-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Хейзен - Симфония № 6. Углерод и эволюция почти всего краткое содержание
Симфония № 6. Углерод и эволюция почти всего - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поразительный вывод: бесчисленное множество атомов углерода вашего тела сформировалось не в звездах, как мы привыкли считать, а при Большом взрыве – целых 13,8 млрд лет назад, в начале времен. Известно изречение Карла Сагана: «Мы состоим из звездного пепла» [14] Цит. по: Саган К. Космос / Пер. А. Сергеева. – М.: Альпина нон-фикшн, 2020. – Прим. ред.
[15] Carl Sagan, Cosmos (New York: Random House, 2002).
. Но благодаря углероду НБВ мы также состоим из пепла Большого взрыва.
Звездное вещество
Земля и жизнь требуют намного – в триллионы раз – больше углерода, чем могло образоваться в первичном котле Большого взрыва. Чтобы найти такие большие запасы шестого элемента, мы должны приглядеться к светящимся небесам, поскольку почти все атомы углерода были рождены глубоко в недрах звезд.
Роль звезд в истории углерода начала выявляться более века назад благодаря открытиям выдающихся женщин-исследовательниц в Гарвардском университете. Астрономия в 1880-х гг. столкнулась с новой для того времени проблемой – необходимостью обработки огромных объемов данных о природе звезд. До этого астрономы, используя лучшие на тот момент в мире телескопы, зафиксировали положение и яркость более 200 000 звезд, но данных об их физических и химических свойствах было очень мало. К последней четверти XIX столетия у астрономов появилась возможность использовать новые методы, основанные на совмещении мощных телескопов с чувствительными спектрометрами и фотокамерами. В результате на стеклянных фотопластинках знакомый небесный образ из тысячи ярких точек выглядел как мозаика звездных спектров. Подобно тому как стеклянная призма превращает сфокусированный луч белого света в радужный спектр, так и каждая звезда проявилась на этих фотографиях в виде крошечного вытянутого прямоугольника с похожей на штрихкод последовательностью вертикальных линий: каждый рисунок представлял собой радугу цветов спектра от красного до фиолетового.
Такие звездные спектры содержат много информации о звезде. Каждый химический элемент, нагретый до высокой температуры поверхности звезды (обычно от 2000 до 30 000 °C), испускает свой характерный набор ярких линий разных цветов – своего рода «отпечаток пальца» атома. Каждая линия возникает, когда электроны атома перескакивают с более высокого энергетического уровня на более низкий – совершают квантовый скачок, сопровождаемый крошечной вспышкой света определенного цвета. Четкая, близко расположенная пара оранжевых линий характеризует натрий. У водорода – одна интенсивная красная линия, одна зеленая и восемь более слабых линий в сине-фиолетовой части спектра. А у углерода – более 20 четких линий, распределенных по всему спектру. Каждый звездный спектр – это сложное наложение характерных линий десятков химических элементов.
Вооружившись новыми спектроскопическими инструментами, астрономы получили тысячи стеклянных фотопластинок, каждая – с сотней звезд, которые нужно было проанализировать. Каждый звездный спектр следовало изучить и интерпретировать визуально, на глаз. Это была напряженная, утомительная работа. Спектры накапливались намного быстрее, чем удавалось их обработать.
Благодаря новаторским исследованиям врача и астронома-любителя Генри Дрейпера, получившего первое изображение звездного спектра в 1872 г., одним из самых продуктивных центров фотографирования звезд на пластинки стала обсерватория Гарвардского колледжа. Дрейпер получил более 100 изображений со звездными спектрами на стеклянных пластинках, но умер в 1882 г., когда работа только начинала набирать обороты. Друг Дрейпера, гарвардский профессор астрономии Эдуард Чарльз Пикеринг, продолжил его дело в 1885 г. Еще через год богатая вдова исследователя Мэри Дрейпер начала спонсировать исследования Пикеринга, а также издание все расширяющегося «Каталога Генри Дрейпера».
Как и бóльшая часть научных сфер 1880-х гг., астрономия была почти исключительно мужской прерогативой. На самом деле и позже – уже в XX в. – в большинстве обсерваторий женщинам долго не разрешалось работать вместе с мужчинами в «соблазнительное» ночное время. Мужчины занимались и анализом фотопластинок, хотя Пикеринг постоянно был недоволен их небрежной работой. «Моя шотландская служанка справилась бы лучше», – неоднократно сетовал он [16] Цит. по: Lindsay Smith, “Williamina Paton Fleming,” Project Continua 1 (2015).
.
К счастью для Пикеринга, его шотландской служанкой была Вильямина Флеминг, учительница, которая иммигрировала с мужем и ребенком в Соединенные Штаты из шотландского города Данди в возрасте 21 года. Вскоре после этого ее бросил муж, и она нанялась в услужение к Пикерингу. В 1881 г. исследователь предложил ей работу в обсерватории, научив 24-летнюю Флеминг читать звездные спектры. Его поступок, хотя и отнюдь не свидетельствовавший об альтруизме (ее зарплата 25 центов в час была значительно меньше, чем у мужчин), открыл женщинам дверь в эту область.
Флеминг преуспела не только в толковании спектров, она также заметила закономерности в расположении тысяч звезд. Вильямина быстро научилась выявлять мельчайшие отличия в положении и интенсивности разных спектральных линий и предложила систему классификации, дав каждой звезде буквенное обозначение от A до Q, основанное в первую очередь на выраженности характерных спектральных линий водорода. Она также обнаружила сотни прежде неизвестных астрономических объектов, включая знаменитую туманность Конская Голова и десятки других туманностей – огромных скоплений пыли и газа, как теперь известно, насыщенных углеродсодержащими молекулами. А еще Флеминг проложила путь в Гарвардскую обсерваторию и другим женщинам (их оказалось более десяти), которых потом стали называть «гарвардскими вычислителями» [17] Увлекательную историю гарвардских вычислителей и астрономии конца XIX – начала XX в. см. в: Dava Sobel, The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars (New York: Viking, 2016).
.
Когда новые спектральные данные по тысячам звезд полились рекой, астрономы оказались готовыми сильно изменить наши представления о происхождении и распределении углерода во Вселенной. Первым важным шагом стало составление более подробной классификации разных типов звезд – прорыв, который совершила астроном Энни Джамп Кэннон.
Энни Кэннон родилась в 1863 г. в Довере, штат Делавэр. Ее отец Уилсон Кэннон был сенатором этого штата и кораблестроителем. Мать Мэри Джамп Кэннон любила ночное небо. Пользуясь старой потрепанной книгой по астрономии, мать с дочерью вместе определяли звезды и созвездия. Родители поддержали Энни, когда она решила изучать науку в колледже Уэллсли; ее наставницей стала Сара Фрэнсис Уайтинг, преподаватель физики этого колледжа. В 1884 г., в возрасте 20 лет, Энни Кэннон с отличием окончила колледж со степенью по физике.
Читать дальшеИнтервал:
Закладка: