Антон Евдокимов - Гармоники в астрологии

Тут можно читать онлайн Антон Евдокимов - Гармоники в астрологии - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Антон Евдокимов - Гармоники в астрологии краткое содержание

Гармоники в астрологии - описание и краткое содержание, автор Антон Евдокимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С помощью гармонических карт можно получить более полную и завершенную картину человеческой личности или ситуации, чем по одной карте рождения. Благодаря этому, карты гармоник оказываются неоценимы в практике астрологической интерпретации и консультирования. Особенно в случаях, когда истинная картина тех или иных поступков не видна сразу. Книга будет полезна многим астрологам, как изучающим астрологию, так и тем, кто желал бы расширить свой арсенал астрологических техник.

Гармоники в астрологии - читать онлайн бесплатно ознакомительный отрывок

Гармоники в астрологии - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Антон Евдокимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Гармония сфер входила в более широкий круг концепций «космической музыки», не обязательно связанной с астрономией. Гармония сфер влияет не только на ступени звукоряда, но и на систему нотации, тональности, вокальные формы. От гармонии сфер в собственном смысле следует отличать корреляцию четырёх тонов тетрахорда (четырёхструнной лиры) и четырёх элементов (Боэций, «О музыке») или «пифагорейскую» теорию музыки времён года в изложении Аристида Квинтилиана: весна образует кварту по отношению к осени, квинту по отношению к зиме, октаву по отношению к лету, и т. д.

Благодаря оживлению идеи гармонии сфер в неопифагореизме и неоплатонизме, и главным образом – через посредство Августина, Макробия и Боэция, пифагорейско-платоновское космологическое понимание музыки подчинило себе всю средневековую и западноевропейскую музыкальную эстетику. Параллельно – благодаря включению гармонии сфер в систему Птолемея – идея музыки сферы продолжала жить в астрономии и астрологической традиции вплоть до Нового времени.

И. Кеплер пытался обосновать гармонию сфер научно, исследуя соотношение угловых скоростей планет («Harmonices Mundi» – «Учение о гармонии мира», 1619 г.), тогда как поэты – Шекспир («Венецианский купец»), Гёте («Фауст») и романтики – стремились дать новую жизнь древнему учению.

Итак, начнем с Пифагора, который, если верить античной традиции, вычислил опытным путем гармоничность созвучия. Римский грамматик Цензорин описывает опыты Пифагора следующим образом:

«А теперь, чтобы стало ясно, каким образом звуки, не доступные ни взгляду, ни прикосновению, могут иметь меру, поведаю об удивительной выдумке Пифагора, который, подстерегая секреты природы, открыл, что „фтонги“ 1 1 То есть, звуки. От греческого φθογγος – звук. у музыкантов сходятся с рядом чисел. Ибо натягивая различными грузами струны равной толщины и одинаковые по длине и изменяя грузы по мере того, как при частых ударах по струнам получались звуки, не соединимые ни в какую симфонию, он уловил, наконец, испробовав это много раз: две струны, совместно звуча, дают то, что есть δια τεσσαρον 2 2 Кварта. От δια (через) и τεσσαρον (четыре). , когда их грузы в сопоставлении образуют пропорцию три к четырем, каковой фтонг греческие математики называют επιτριτον, а латинские – супертерций 3 3 То есть целое с третью, 4/3. . А симфонию, что зовется δια πεντε 4 4 Квинта. От δια (через) и πενθος (пять ). , он открыл там, где веса различались в полуторной пропорции, которую составляют два к трем (так называемый ημιολιον 5 5 (греч.) Полтора. ). Когда же одна струна натягивалась грузом в два раза тяжелее, чем другая (и это было διπλασιον λογος), тогда начинала звучать δια πασων 6 6 Октава. От δια (через) и πας, (все). . Он испробовал, выйдет ли это и на флейтах, и получил то же самое. Ибо он изготовил четыре флейты с одинаковой скважиной, но неодинаковые по длине, – скажем, первая была длиной в шесть пальцев, вторая – на треть длиннее, то есть в восемь пальцев, третья в девять пальцев, в полтора раза длиннее первой, четвертая же в двенадцать пальцев, что дает удвоенную длину первой. Итак, дуя в них и сопоставляя их по две, он подтвердил оценку всех музыкантов на слух: первая и вторая обнаруживают то же согласие, которое являет симфония δια τεσσαρον, и здесь пропорция „один к одному с третью“; между первой и третьей флейтой, где полуторная пропорция, раздается δια πεντε; а промежуток между первой и четвертой, где пропорция „один к двум“, дает диастему 7 7 Интервал (греч. διαστημα). δια πασων. Правда, между природой флейты и струны та разница, что флейты, удлинняясь, звучат ниже, а струны с увеличением веса – выше, но пропорции в обоих случаях одни.»

Существовали и другие версии описания опытов Пифагора, в которых он оперирует со струной и с наполненными водой сосудами, а у Боэция он слушает в кузне удары молотков различного веса. Общее в этих историях одно: дроби, выражающие соответствующие интервалы.

Теперь уже практически невозможно установить, чем же занимался Пифагор на самом деле. Однако некоторые из этих вариантов можно смело отбросить как почти наверняка недостоверные. Например, выглядит совсем маловероятным, чтобы в кузнице, мимо которой, случайно проходил Пифагор, работали именно молотками, веса которых находятся в строго определенном и точном соотношении друг с другом. Но есть и другая проблема. Хотя многие авторы и в древности, и сейчас повторяют эти истории, как если уж не достоверные, то вполне возможные, вряд ли кто-нибудь из них когда-либо пытался повторить эти опыты. Но по крайней мере один пытливый человек все же нашелся. В 1589 году Винченцо Галилей, отец Галилео Галилея, провел эксперименты и с удивлением обнаружил, что, вопреки повторенным многими историям из жизни Пифагора, не все эти опыты дадут одинаковые числовые соотношения. Оказалось, что, если использовать молотки, то веса молотков, создающих звуки с интервалом в октаву, будут соотноситься не как 2/1, а как 4/1. То же самое и при опыте с подвешиванием грузов – 4/1. А вот при опытах с сосудами разница с Пифагором получается еще большей: соотношение октавы в этом случае получается 8/1. Однако дудки и струна выдержали испытания и подтвердили пифагорейские соотношения.

Если Пифагор действительно проводил опыты (а это выглядит вполне вероятным), то, скорее всего, он экспериментировал с натянутой струной. При этом, если зажать струну ровно посередине, то получающийся звук будет на октаву выше звука свободной струны, то есть мы получим соотношение 1/2 или 2/1. Аналогично получаются и соотношения кварты – 4/3, и квинты – 3/2. Остальные соотношения Пифагор посчитал не дающими гармоничного звучания. Скорее всего, в основе этих числовых соотношений лежал не только эксперимент, но и столь любимая Пифагором математическая красота: все соотношения получаются из первых четырех чисел, то есть священной пифагорейской тетрады, причем во всех случаях используются соседние числа: 2/1, 3/2, 4/3.

Далее Пифагор вывел соотношения между этими интервалами. Октава включала в себя квинту и кварту: 3/2 x 4/3 = 2/1

Разницу между квинтой и квартой Пифагор назвал тоном, и определил тон соотношением 9/8: 3/2:4/3 = 9/8

Далее он посчитал, сколько тонов составляют кварту и квинту, и увидел, что количество тонов в обоих случаях не целое, но в обоих случаях остается еще небольшой интервал, который он назвал лиммой 8 8 От греческого λειμμα – остаток. В основу принятого русского варианта этого термина легла латинская транскрипция (limma), в которой «е» выпал. , и который оказался равным 256/243:

4/3: 9/8: 9/8 = 256/243

3/2: 9/8: 9/8: 9/8 = 256/243

Таким образом, кварта получилась состоящей из двух тонов и лиммы, а квинта – из трех тонов и лиммы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Антон Евдокимов читать все книги автора по порядку

Антон Евдокимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Гармоники в астрологии отзывы


Отзывы читателей о книге Гармоники в астрологии, автор: Антон Евдокимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x