Анри Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Анри Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Анри Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Анри Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анри Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если, напротив, можно подразделить С только при помощи купюр, которые сами представляют собой непрерывности, то мы скажем, что С – непрерывность нескольких измерений. Если это достигается купюрами, которые являются непрерывностями одного измерения, то мы скажем, что С имеет два измерения; если достаточно купюр, имеющих два измерения, то мы скажем, что С имеет три измерения, и т. д.

Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.

Математическая непрерывность нескольких измерений. Понятие математической непрерывности n измерений вытекает отсюда совершенно естественно при помощи процесса, вполне подобного тому, который мы изучили в начале этой главы. Точка подобной непрерывности, как известно, представляется нам определенной при помощи системы n различных величин, называемых ее координатами.

Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка В на кривой АВС между точками A и С , и не стараются узнать, равна ли дуга АВ дуге ВС , или она в два раза больше ее. Это – так называемый Analysis Situs.

В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались искусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.

Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование для второй части.

Часть II. Пространство

Глава III. Неевклидовы геометрические системы

Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:

1. Между двумя точками можно провести лишь одну прямую.

2. Прямая есть кратчайшее расстояние между двумя точками.

3. Через данную точку можно провести лишь одну прямую, параллельную данной.

Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.

Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский – Лобачевский и венгерский – Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Ober die Нуроthesen, welche der Geometrie zum Grunde liegen» [4] Analysis Situs – анализ положения, в современной терминологии – топология. – Прим. ред . . Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.

Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.

Но как раз это и сделал Лобачевский. Он допускает сначала, что через точку можно провести несколько прямых, параллельных данной прямой .

Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.

Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.

Невозможно построить фигуру, подобную данной, но имеющую иные размеры.

Если разделить окружность на n равных частей и провести в точках деления касательные, то эти n касательных образуют многоугольник, если радиус окружности достаточно мал; но если этот радиус достаточно велик, они не встретятся.

Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.

Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.

Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анри Пуанкаре читать все книги автора по порядку

Анри Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Анри Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x