Александр Ивин - Логика

Тут можно читать онлайн Александр Ивин - Логика - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Высшая школа, год 2002. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Ивин - Логика краткое содержание

Логика - описание и краткое содержание, автор Александр Ивин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге доступно, ясно и вместе с тем строго и систематично излагаются основные понятия и принципы современной логики. Главное внимание уделяется логической проблематике, представляющей особый интерес с точки зрения наук о культуре. Изложение логической теории сочетается с показом логического анализа в действии, в применении к содержательно интересным проблемам. Немаловажным преимуществом является также то, что данный учебник специально рассчитан на представителей гуманитарных специальностей. Символические средства, широко используемые современной логикой, здесь сведены к минимуму. Особое внимание уделяется естественному языку и тем логическим ошибкам, которые возможны при его употреблении.

Для студентов социальных и гуманитарных специальностей (философов, юристов, филологов, социологов, политологов, журналистов и др.). Для специалистов, занимающихся исследованиями в области логики, философской логики, литературоведения, языкознания, риторики, стилистики, культурологии, психологии, социологии, политологии, юриспруденции, а также отдельных богословских дисциплин (гомилетики, пастырского богословия). Книга может быть рекомендована в качестве дополнительного пособия для всех изучающих древние и новые иностранные языки.

Логика - читать онлайн бесплатно ознакомительный отрывок

Логика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Ивин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Множество является конечным или оно бесконечно.

Множество не является конечным.

Множество бесконечно.

Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом .

С использованием логической символики умозаключение формулируется так:

Логика - изображение 17

Или:

Логика - изображение 18

В современной логике модус толлендо поненс называется также правилом удаления дизъюнкции . Ему соответствует логический закон:

(A v B) & ~ AB ,

если A или B и ~ A , то В .

Законы де Моргана

Широкое применение находят законы, названные именем американского логика А. де Моргана и позволяющие переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот:

~ (A & B)(~ A v ~ В) ,

если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе;

( ~ A v ~ В) → ~ & В) ,

если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания «Неверно, что изучение логики и трудно, и бесполезно» можно перейти к высказыванию «Изучение логики не является трудным, или же оно не бесполезно». Объединение этих двух законов даёт закон (↔ – эквивалентность, «если и только если»):

~(A & B)(~ A v ~ B) .

Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний.Например: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо».

Ещё один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний:

~ (A v В)( ~ А & ~ В) ,

неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии». На основе законов де Моргана связку «и» можно определить, используя отрицание, через «или», и наоборот:

– « A и B » означает «неверно, что не- A или не- B »,

– « A или B » означает «неверно, что не- A и не ».

К примеру: «Идёт дождь и идёт снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро».

Закон приведения к абсурду

Редукция к абсурду(приведение к нелепости) – это рассуждение, показывающее ошибочность какого-то положения путём выведения из него абсурда, т.е. логического противоречия.Если из высказывания A выводится как высказывание B , так и его отрицание, то верным является отрицание A . Например, из высказывания «Треугольник – это окружность» вытекает с одной стороны то, что треугольник имеет углы (быть треугольником значит иметь три угла), с другой, что у него нет углов (поскольку он окружность); следовательно, верным является не исходное высказывание, а его отрицание «Треугольник не является окружностью».

Закон приведения к абсурду представляется формулой:

В) & (А → ~ В) → ~ A ,

если (если A , то В) и (если A , то не- B ), то не- A

Приведение к нелепости, замечает математик Д. Пойа, имеет некоторое сходство с иронией, любимым приёмом сатирика: ирония принимает определённую точку зрения, подчёркивает её и затем настолько её утрирует, что в конце концов приводит к явному абсурду.

Частный закон приведения к абсурду представляется формулой:

(А → ~ А) → ~ А ,

если (если A , то не- A ), то не . Например, из положения «Всякое правило имеет исключения», которое само является правилом, вытекает высказывание «Есть правила, не имеющие исключений»; значит, последнее высказывание истинно.

Закон косвенного доказательства

Закон косвенного доказательства позволяет заключить об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечёт противоречие.Например: «Если из того, что 17 не является простым числом, вытекает как то, что оно делится на число, отличное от самого себя и единицы, так и то, что оно не делится на такое число, то 17 есть простое число».

Символически закон косвенного доказательства записывается так:

(~ АВ) & (~ А → ~ В)A ,

если (если не- A , то В) и (если не- A , то не- В) , то А .

Законом косвенного доказательства обычно называется и формула:

(~ А & ~ В))A ,

если (если не , то B и не- B) , то A . К примеру: «Если из того, что 10 не является чётным числом, вытекает, что оно делится и не делится на 2, то 10 – чётное число».

Закон Клавия

Закон Клавияхарактеризует связь импликации и отрицания. Он читается так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным.Или, короче: высказывание, вытекающее из своего собственного отрицания, истинно.Или иначе: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание истинно. Например, если условием того, чтобы машина не работала, является её работа, то машина работает.

Закон назван именем Клавия – учёного-иезуита, жившего в XVI в., одного из изобретателей григорианского календаря. Клавий первым обратил внимание на этот закон в своём комментарии к «Геометрии» Евклида. Одну из своих теорем Евклид доказал, выведя из её допущения, что она является ложной.

Символически закон Клавия представляется формулой:

(~ АА)A ,

если не- A имплицирует A , то верно А .

Из закона Клавия вытекает следующий совет, касающийся доказательства: если хочешь доказать A , выводи A из допущения, что верным является не- A Например, нужно доказать утверждение «У трапеции четыре стороны». Отрицание этого утверждения: «Неверно, что у трапеции четыре стороны». Если из этого отрицания удаётся вывести само утверждение, это будет означать, что оно истинно.

Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором. Последний утверждал, что истинно все то, что кому-либо приходит в голову. На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания: «Не все высказывания истинны». И значит, это отрицание, а не положение Протагора, на самом деле истинно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Ивин читать все книги автора по порядку

Александр Ивин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика отзывы


Отзывы читателей о книге Логика, автор: Александр Ивин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x