LibKing » Книги » Научные и научно-популярные книги » Прочая научная литература » Андраник Иосифьян - Электромеханика в космосе

Андраник Иосифьян - Электромеханика в космосе

Тут можно читать онлайн Андраник Иосифьян - Электромеханика в космосе - бесплатно полную версию книги (целиком). Жанр: Прочая научная литература, издательство Знание, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Андраник Иосифьян - Электромеханика в космосе

Андраник Иосифьян - Электромеханика в космосе краткое содержание

Электромеханика в космосе - описание и краткое содержание, автор Андраник Иосифьян, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Электромеханику, в общем смысле слова, можно определить как науку о законах движения вещественных инерциальных микро- и макротел, несущих электрические заряды и токи, при взаимодействии их с магнитными и электрическими полями. В то же время электромеханика является и отраслью техники, использующей электрическую энергию для производственной, научной и жизненной деятельности и неразрывно связанной с орудиями и средствами труда во всех областях народного хозяйства. В данной брошюре изложено одно из важных применений электромеханики — ее использование в космической технике.

Она рассчитана на широкий круг читателей.

Электромеханика в космосе - читать онлайн бесплатно полную версию (весь текст целиком)

Электромеханика в космосе - читать книгу онлайн бесплатно, автор Андраник Иосифьян
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать
Между тем современная теория и техника использования электричества и магнетизма для точной ориентации и навигации еще далеки от того совершенства управления движением в пространстве, которое имеет место в органической природе. Ведь пернатые, используя лишь ничтожную энергию и обладая очень малой мощностью, осуществляют сверхдальние перелеты, совершая при этом сложные виды движения в пространстве.

Для управления движением современных автоматизированных летательных аппаратов как близ земной поверхности, так и в космическом пространстве требуются наличие чувствительных элементов для регистрации положения аппарата в пространстве, выработка электрических сигналов и параметров, соответствующих этому положению, разработка логики управления на основе полученных многочисленных сигналов и, наконец, передача электрических сигналов на силовые управляющие исполнительные органы. В качестве исполнительных органов могут быть использованы электрические двигатели, электромагнитные механизмы, электрогидравлические приводы.

Особенности электромеханических систем, обеспечивающих вывод космического летательного аппарата на орбиту вокруг Земли и его движение по орбите, весьма наглядно проявляются при анализе движения самолетов (на различных этапах их развития). На первых летательных аппаратах пилот самолета совершал взлет, ориентируясь по взлетной дорожке. По наблюдению за горизонтом он осуществлял подъем или спуск, наклоняя или поднимая носовую часть аппарата вокруг его поперечной оси («управлял углом тангажа»). Используя различные виды ориентиров, наклонял самолет вправо или влево вокруг продольной оси аппарата («управлял углом крена»). И наконец, наблюдая за магнитной стрелкой или прибором курса, поворачивал самолет вокруг вертикальной оси («управлял углом рыскания»).

Таким образом, с помощью трех рулевых механизмов, действующих относительно трех взаимно перпендикулярных осей с точкой пересечения, расположенной в центре масс самолета, называемых обычно «строительными осями самолета» (продольной — по крену, поперечной — по тангажу, вертикальной — по рысканию), пилот мог ориентировать самолет в любом направлении. Исполнительными органами служили рулевые механизмы и рули. На первых самолетах пилот осуществлял управление рулевыми механизмами с помощью своей мускульной силы. Ориентируясь по показаниям приборов и собственным наблюдениям и используя исполнительные органы — рули, пилот организовывал, как говорят, «следящую систему», или «следящий привод». Эта «природная» система следила за отклонениями аппарата от нормального курса движения и при необходимости воздействовала на исполнительные органы, чтобы свести эти отклонения к минимальным значениям, обеспечивая движение самолета по заданному курсу. Вследствие инерциальности движения летательного аппарата управление им должно носить колебательный характер относительно заданного точного курса. Такой же колебательный характер движения от «курса» совершает автомобиль, управляемый водителем, который при движении даже по прямолинейной дороге все время воздействует на рулевую систему автомашины, направляя машину вправо или влево для сохранения основного направления движения.

Простейшие автопилоты с исполнительными органами по типу, предложенному К. Э. Циолковским для дирижабля, стали использовать только в 30-е годы нашего века. На следующем этапе — создания скоростных и сверхскоростных самолетов — разрабатываются автопилоты, которые обеспечивают не только автоматическое движение по заданной траектории, но и автоматический взлет, и так называемую «слепую» посадку. Электромеханические системы этих аппаратов уже имеют чувствительные приборы (датчики), которые регистрируют и передают в систему автоматического управления (с автопилотом) все основные данные, характеризующие реальное движение летательного аппарата.

На борту современных летательных аппаратов имеется группа датчиков, измеряющих ускорение, скорости в направлении всех трех собственных строительных осей аппарата. Эти датчики представляют собой электромеханические приборы — ньютонометры (акселерометры). Другую группу электромеханических датчиков составляют астродатчики, т. е. приборы, определяющие положение аппарата относительно звезд. Среди информационных чувствительных элементов (датчиков) имеются также приборы, измеряющие угловые ускорения движения по углам тангажа, рыскания и крена. Эти приборы основаны на принципе электромеханических гироскопов, о которых речь пойдет дальше. И наконец, на борту современных летательных аппаратов устанавливается электронная вычислительная машина (ЭВМ), которая, получая информацию от всех датчиков, вычисляет фактическую траекторию аппарата и сравнивает ее с идеальной траекторией, записанной в памяти ЭВМ. Определяя отклонения фактической траектории от расчетной, ЭВМ в результате логических операций вырабатывает соответствующие сигналы, которые подаются в исполнительные органы аппарата — рулевые механизмы, электрические реле и автоматы, регулирующие работу авиадвигателей и обеспечивающие тем самым минимальное отклонение параметров реальной траектории от идеальной.

В ракете-носителе автоматизированы взлет, выход на орбиту по заданной траектории, отделение спутника. Автоматизированы также процессы ориентации и стабилизации при движении космического летательного аппарата по заданной траектории и, наконец, посадка на планету и взлет с нее. Можно сказать, что ракета-носитель, как и любой космический летательный аппарат, является своеобразным мощным «силовым роботом». И не случайно в 1974 г. на VI симпозиуме Международной федерации по автоматическому управлению в космическом пространстве, кроме докладов, посвященных ракетам-носителям, спутникам, телескопам для внеатмосферной астрономии, было представлено большое количество докладов по роботам и манипуляторам.

Анализ систем управления роботами и манипуляторами как объектами, произвольно двигающимися в пространстве, показал, что эти системы имеют много общего с аналогичными системами космических летательных аппаратов. Особенно это касается приборов и систем наблюдения и информации, электрических схем управления ориентацией и стабилизацией, следящих исполнительных механизмов. Для того чтобы ракета-носитель двигалась автоматически по определенной трассе, а в момент отделения от нее искусственного спутника Земли имела заданную по величине и направлению скорость, на ней устанавливается прибор, в котором заложена программа движения. Прибор, сохраняя свое положение в пространстве, определяет фактическое положение ракеты-носителя, регистрирует любое отклонение ее движения от заданного с помощью электрических сигналов, по которым осуществляется рулевое управление космического летательного аппарата. Такой сложный прибор называется электромеханической стабилизированной платформой (или инерциальной платформой). На рис. 2 представлена схема такой (платформы. На ней установлены: ньютонометры для измерения ускорений (по трем осям координат); приборы, определяющие скорости, приобретенные с момента взлета, а также траекторию, определенную по этим скоростям (при наличии точных часов); и, наконец, приборы, которые сравнивают эту фактическую траекторию с программной, заложенной в памяти автомата. Автомат может быть электромеханическим и в виде управляющей ЭВМ. Сигналы отклонения привадят в действие соответствующие автоматы стабилизации и ориентации, которые воздействуют как на ракетные основные, так и на рулевые двигатели таким образом, чтобы как можно быстрее ликвидировать эти отклонения.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Андраник Иосифьян читать все книги автора по порядку

Андраник Иосифьян - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Электромеханика в космосе отзывы


Отзывы читателей о книге Электромеханика в космосе, автор: Андраник Иосифьян. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img