LibKing » Книги » Научные и научно-популярные книги » Прочая научная литература » Александр Дмитриев - Космические двигатели будущего

Александр Дмитриев - Космические двигатели будущего

Тут можно читать онлайн Александр Дмитриев - Космические двигатели будущего - бесплатно полную версию книги (целиком). Жанр: Прочая научная литература, издательство Знание, год 1982. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Дмитриев - Космические двигатели будущего

Александр Дмитриев - Космические двигатели будущего краткое содержание

Космические двигатели будущего - описание и краткое содержание, автор Александр Дмитриев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В брошюре сделана попытка представить себе возможные пути развития космических двигательных систем завтрашнего дня. Рассматривается ряд традиционных и новых идей и проектов в области космических двигателей, их возможности и соответствие тем — задачам, которые по сегодняшним представлениям станут наиболее актуальными в не очень отдаленной перспективе.

Брошюра рассчитана на широкий круг читателей.

Космические двигатели будущего - читать онлайн бесплатно полную версию (весь текст целиком)

Космические двигатели будущего - читать книгу онлайн бесплатно, автор Александр Дмитриев
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Охлаждение катода, вызванное «испарением» электронов и потерями на излучение, компенсируется подводом тепла от ядерного реактора. Тепло, выделяющееся на аноде в результате конденсации электронов и лучистого подогрева со стороны катода, отводится теплоносителем или непосредственно излучением в космическое пространство.

Рис 5 Принципиальная схема термоэмиссионного преобразователя тепловой энергии - фото 5

Рис. 5. Принципиальная схема термоэмиссионного преобразователя тепловой энергии в электрическую: 1 — катод, 2 — межэлектродный зазор, заполненный парами цезия, 3 — анод, 4 — нагрузка

Термоэлектронный преобразователь с вольфрамовым катодом может работать при температуре катода до 2500 К и температуре анода 1000–1400 К с удельной мощностью от 5 до 40 Вт/см 2при КПД до 25 %. Недостатком ТЭП является его малое рабочее напряжение (около 0,5 В), и поэтому используется последовательное соединение элементов.

Теоретически температура теплосброса, оптимальная с точки зрения размеров холодильника, должна составлять 75 % от температуры источника тепла. При температурных ограничениях, накладываемых твердотельным реактором, холодильник-излучатель всегда будет если не самой тяжелой, то самой громоздкой частью космической энергоустановки. Для эффективной работы холодильника его поверхность должна иметь температуру, близкую к нижней температуре теплового цикла.

Добиться этого за счет естественной теплопроводности материалов нельзя, необходим принудительный перенос тепла путем циркуляции жидкого или газообразного теплоносителя. При этом появляются дополнительные потери энергии на прокачку теплоносителя, и установка оказывается весьма уязвимой к метеоритному пробою. При больших поверхностях холодильника резко возрастает вероятность попадания метеорита размером, достаточным для разрушения стенки канала с теплоносителем, что приведет к разгерметизации и выходу установки из строя.

Наиболее удачным конструктивным решением, позволяющим обойти эти проблемы (потеря мощности и метеоритный пробой), является использование тепловых труб. Тепловая труба представляет собой канал с циркулирующим теплоносителем, на внутренних стенках которого с зазором располагается так называемый фитиль (в простейшем случае это мелкоячеистая сетка). Предварительно откачанная труба заполняется жидкостью в количестве, достаточном для заполнения зазора между фитилем и стенкой трубы, где она удерживается затем капиллярными силами.

В тепловой трубе различают зоны нагрева, переноса тепла и охлаждения. В холодильнике-излучателе две последние зоны, как правило, совмещены. Тепло, подводимое к зоне нагрева, испаряет жидкость, пары которой проходят через отверстия фитиля во внутреннее пространство трубы и устремляются к зоне охлаждения. Там происходит конденсация жидкости с передачей тепла конденсации стенкам трубы, от которых оно отводится излучением. Жидкость, образовавшаяся в результате конденсации, возвращается капиллярными силами, создающимися в фитиле и в зазоре между фитилем и стенкой трубы, назад в зону нагрева.

Такой процесс теплопередачи настолько эффективен, что, например, сейчас испытаны трубы, передающие тепловой поток 10 кВт на каждый 1 см 2поперечного сечения трубы на расстояние в несколько метров при перепаде температур между концами трубы менее 0,01 К. Это эквивалентно теплопередаче сплошного стержня с коэффициентом теплопроводности, в несколько тысяч раз превышающим соответствующее значение для меди. С тепловыми трубами по возможностям транспортировки тепла могут конкурировать лишь системы с жидкометаллическим теплоносителем, но в них требуются затраты работы на прокачку.

Рис 6 Схема пылевого холодильникаизлучателя 1 насос 2 теплообменник 3 - фото 6

Рис. 6. Схема пылевого холодильника-излучателя: 1 — насос, 2 — теплообменник, 3 — ферромагнитная пыль, 4 — обмотка соленоида, 5 — силовые линии магнитного поля

Из тепловых труб собирается поверхность холодильника-излучателя. Зона подвода тепла может либо непосредственно контактировать с охлаждаемым узлом, либо омываться промежуточным теплоносителем. Поскольку для создания излучающей поверхности нужно использовать много тепловых труб, а их каналы могут быть между собой несвязанными, то повреждение одной или нескольких труб метеоритом лишь несущественно скажется на работе всей установки.

Возможны схемы теплосброса, когда теплоносителем является ферромагнитная пыль (рис. 6), которая прокачивается насосом через теплообменник, снимая отработанное тепло энергоустановки, и выбрасывается во внешнее пространство. Там они захватываются и возвращаются снова на вход насоса. В магнитном поле ферромагнитные частицы, сцепляясь друг с другом, выстраиваются вдоль силовых линий, создавая излучающую оболочку. При достаточной магнитной проницаемости вещества пыли все внешнее магнитное поле оказывается сосредоточенным в этой оболочке и не происходит его бесполезного рассеяния.

Преимуществом такого типа холодильника-излучателя является его полная неуязвимость к поражению метеоритами, а также малые размеры при транспортировке энергоустановки с поверхности Земли на орбиту спутника, так как при этом пыль может находиться в малогабаритном контейнере. В настоящее время эта схема находится еще в стадии теоретических проработок. Ее реализация сдерживается отсутствием легких и экономичных источников магнитного поля.

Импульсные двигатели на микровзрывах и фотонный двигатель.Принцип действия импульсных ядерных ракетных двигателей (ИЯРД), схемы которых приведены на рис. 7, а и б , заключаются в том, что над поверхностью массивного отражателя производятся периодические ядерные или термоядерные взрывы. Существенными элементами ИЯРД являются источник магнитного поля, которое препятствует попаданию заряженных продуктов реакции на поверхность отражателя, и демпфер, служащий для сглаживания импульсной нагрузки, передаваемой ракете.

Обычно в таких двигателях в результате воздействия взрыва испаряется либо материал отражателя, либо рабочее тело, подаваемое на поверхность отражателя. Кроме того, для улучшения условий протекания ядерной реакции, увеличения доли прореагировавших атомов и уменьшения температуры взрыва ядерный заряд заключают в достаточно толстую оболочку пассивного вещества. В результате отбрасываемая масса будет состоять в основном из веществ, не принимающих участие в реакции (водород, литий и др.), и скорость истечения в таких двигателях ограничена 100 км/с.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Дмитриев читать все книги автора по порядку

Александр Дмитриев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Космические двигатели будущего отзывы


Отзывы читателей о книге Космические двигатели будущего, автор: Александр Дмитриев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img