Вернер Гильде - Зеркальный мир

Тут можно читать онлайн Вернер Гильде - Зеркальный мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство МИР, год 1982. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вернер Гильде - Зеркальный мир краткое содержание

Зеркальный мир - описание и краткое содержание, автор Вернер Гильде, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Крупный ученый из ГДР в живой и увлекательной форме знакомит читателей с одним из фундаментальных понятий современного естествознания - симметрией. Рассматриваются ее основные виды, проявления в природе и использование в науке, технике и повседневной жизни. Для широкого круга читателей.

Зеркальный мир - читать онлайн бесплатно полную версию (весь текст целиком)

Зеркальный мир - читать книгу онлайн бесплатно, автор Вернер Гильде
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В старину симметрию в формировании книг соблюдали даже в ущерб правописанию - фото 93

В старину симметрию в формировании книг соблюдали даже в ущерб правописанию

Пока кривая нормального распределения выглядит симметрично, речь идет о случайных отклонениях. Но всякое значительное отступление от симметрии свидетельствует о необходимости установить его причину. В простейшем случае неточным может оказаться измерительный инструмент. Хуже, когда не внушает доверия лаборант, производящий измерения. Однако причина может также заключаться в том, что в число горошин попали (случайно или намеренно) представители иного сорта, которые подчиняются распределению с другими параметрами.

Подобные сведения - и не только подобные - может почерпнуть статистик из нормального распределения. Всем нам есть чему поучиться у Гаусса. Как известно, при планировании и подведении итогов мы часто оперируем средними значениями. Средний годовой доход граждан составляет столько-то. Средний размер обуви мужской части населения такой-то. Среднее потребление пива такое-то и т. д. Однако такое среднее значение еще далеко не отражает истинного положения. Людям с особенно маленькими или особенно большими ногами известна даже песенка на эту тему. А что касается пива, то грудные младенцы, хотя и являются гражданами страны, его не потребляют. Получается, что отцы должны пить за двоих, троих, а то и четверых, чтобы поддержать средний уровень на душу населения. Поэтому Юден с полным правом написал, что нормальное распределение «является незаменимым орудием для анализа и обработки данных». К непроанализированным средним значениям следует питать глубокое недоверие.

Давайте прикинем, какими средствами в среднем располагают американские миллионер и нищий. Ну, в простейшем случае миллионер обладает как минимум 1 млн. долларов, а нищий - О долларов. Легко вычислить среднее значение:

В старину симметрию в оформлении книг соблюдали даже в ущерб правописанию.

1 000 000 + 0/2 = 500000 долл.

Следовательно, средний американец должен был бы иметь 500 тыс. долларов. В чем тут ошибка?

Расчеты средних величин годятся лишь для больших чисел! Значит, 1000 миллионеров и 1000 нищих? Но и в этом случае вычисление не даст правильного результата:

1 000 000 - 1000 + 0 • 1000/2000 = 500000 долл.

Действительная ошибка заключается в том, что нищие и миллионеры располагаются на противоположных концах кривой распределения имущественного состояния народа. Между ними находятся 150 млн. человек, владеющих 10, 100 или 1000 долларами. И средняя величина или среднее значение лишь в том случае приобретает смысл, когда кривая нормального распределения учитывает все имущественные состояния. Не подлежит сомнению, что наблюдения над распределением состояний всех граждан США покажут, что такое распределение не является нормальным. Тут-то именно следует приняться за математический, экономический и политический анализ.

ЛОГИЧЕСКИЕ ОШИБКИ С СИММЕТРИЙНОЙ ПОДОПЛЕКОЙ

< border="1"> Три одинаковых куска картона Стороны А В С Верхняя сторона красный красный белый Нижняя сторона красный белый белый

Решая математические задачи, имеющие (действительное или кажущееся) «симметрическое решение», мы быстро приходим к ответу. Примером такого рода задач может служить равномерное распределение разности между двумя величинами (то есть к каждой величине требуется прибавить половину этой разности).

Возьмем три одинаковых куска картона А, В и С. Закрасим А с двух сторон в красный цвет, С - в белый и В - с одной стороны в красный, а с другой в белый:

Теперь бросим все три картонки в мешок и вытащим одну из них. Не глядя на ее обратную сторону, положим картонку на стол. Допустим, перед нами красная поверхность. Так как один из кусков, С, выкрашен с обеих сторон в белый цвет, то мы видим либо кусок А (красный - красный), либо кусок В (белый- красный) красной стороной кверху.

И только тут возникает сама задача: как велика вероятность того, что, подняв лежащую перед вами картонку, вы увидите красную обратную сторону? Иными словами, какова вероятность того, что это картонка А 1Вам, конечно, нет надобности долго раздумывать: раз речь идет о двух кусках картона, из которых один А, а другой не А, то решением (симметрическим) будет, разумеется, 1:1, или 50% к 50%. Но, к сожалению, наше «разумеется» ошибочно. Две картонки, между которыми надлежит сделать выбор, имеют следующие красные стороны:

картонка А - верхнюю,

картонка А -нижнюю,

картонка В - верхнюю (снизу она белая).

Одна из сторон обращена кверху с вероятностью 33,3%. Для картонки А эта вероятность, однако, удваивается (верхняя и нижняя стороны), а для картонки В - нет. Следовательно, с вероятностью 66,6% на столе лежит кусок А. Как видим, на основе этого рассуждения можно заключить выигрышное пари: ответ 1:1 столь импонирует большинству людей, что мысль о возможности другого решения им даже не приходит в голову.

Аналогичным образом построена задача о двух детях. Некто говорит: у меня двое детей. По крайней мере один из них - мальчик. Значит, другой - либо мальчик, либо девочка. Какова вероятность того, что второй ребенок - мальчик? Соображаем: в среднем девочек столько же, сколько и мальчиков. Следовательно, сразу же напрашивается ответ: вероятность будет равна 50%. Мы столь быстро склоняемся к такому ответу в силу его симметричности.

Однако правильный ответ мы получим, продумав все возможные комбинации в семье с двумя детьми.

Один ребенок всегда старше, другой моложе. Значит, возможны случаи ДСММ, МСДМ, МСММ, но невозможна комбинация Дс Дм, так как один ребенок является мальчиком по условию задачи. Среди трех возможных случаев лишь в одном второй ребенок - тоже сын, и соответственно вероятность этого составляет 33%. В 66% случаев второй ребенок будет девочкой, если только первый - определенно мальчик.

Математик Юден посвятил кривой Гаусса хвалебный гимн придав тексту гимна форму - фото 94

Математик Юден посвятил кривой Гаусса хвалебный гимн, придав тексту гимна форму такой кривой

Еще затруднительнее следующий вопрос: вы ищете величину А, заключенную между 90 и 110. Ее значение вам неизвестно. Требуется определить число, для которого ошибка в обе стороны будет минимальной (то есть симметричной). Вам, конечно, хотелось бы назвать число 100, так как оно находится посередине между 90 и ПО, но вы не доверяете себе, ибо есть основания полагать, что эта величина неверна (такое решение кажется слишком простым). Чтобы вычислить правильное значение, воспользуемся условием: ошибка сверху и снизу должна быть одинакова. Значит,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вернер Гильде читать все книги автора по порядку

Вернер Гильде - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Зеркальный мир отзывы


Отзывы читателей о книге Зеркальный мир, автор: Вернер Гильде. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x