Вернер Гильде - Зеркальный мир

Тут можно читать онлайн Вернер Гильде - Зеркальный мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство МИР, год 1982. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вернер Гильде - Зеркальный мир краткое содержание

Зеркальный мир - описание и краткое содержание, автор Вернер Гильде, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Крупный ученый из ГДР в живой и увлекательной форме знакомит читателей с одним из фундаментальных понятий современного естествознания - симметрией. Рассматриваются ее основные виды, проявления в природе и использование в науке, технике и повседневной жизни. Для широкого круга читателей.

Зеркальный мир - читать онлайн бесплатно полную версию (весь текст целиком)

Зеркальный мир - читать книгу онлайн бесплатно, автор Вернер Гильде
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ЧТО ТАКОЕ МОДЕЛЬ?

Возможности человеческого чувственного восприятия весьма ограниченны. Пока речь идет об отрезке длиной в 1 мм или 10 км, о трех месячных окладах или о ведре воды, мы представляем себе эти величины вполне конкретно. Но толщину паутинки, или миллион марок, или расстояние между Берлином и Сиднеем зрительно воспринять мы не можем. А уж элементарная частица совершенно не поддается наглядному представлению. Мы можем осмыслить ее только с помощью математических уравнений или моделей. Ученые постоянно пытаются в своих моделях придать наглядность тому, что не поддается наглядному представлению. Лучшими моделями являются те, которые будучи весьма наглядными, позволяют производить на их основе расчеты. С 1910 г. ученые знали, что атом - это не простейший элемент в строении материи и что сам он построен из других элементов. Неизвестно было только, каким образом. Эта неизвестность очень мешала. Ведь строение нашего мира весьма красиво (пусть с мелкими дефектами) объяснялось при помощи маленьких бесструктурных шариков, называемых атомами. В кристаллохимии и общей химии, при расшифровке строения гена такая модель атомов с успехом используется и до сих пор. Но в те времена задача состояла в том, чтобы предложить такую модель строения атома, которая давала бы возможность дальнейшего использования представления об атомах-шариках и вместе с тем учитывала новейшие достижения физики.

В двадцатых годах нашего века физики Нильс Бор (1885-1962) и Вольфганг Паули (1900-1958) создали модель атома, которая объясняла спектры излучения и поглощения атомов и удовлетворяла одновременно требованиям наглядности ( Ядерная (планетарная) модель атома была предложена Э. Резерфордом; Н. Бор усовершенствовал ее, введя два постулата (допущения), основанных на квантовой теории. В. Паули сформулировал принцип («запрет Паули»), согласно которому в физической системе не может быть двух электронов, находящихся в одинаковом квантовом состоянии. - Прим, перев ). Бор мысленно представил себе, что электроны вращаются вокруг положительно заряженного ядра по вполне определенным орбитам. «Величина» орбит была вычислена с помощью кванта действия Планка. Последнее понятие связывает частоту электромагнитного излучения с энергией кванта, то есть минимальной порцией энергии излучения с заданной частотой. Оказалось, что и параметры электронных орбит связаны с постоянной Планка - коэффициентом пропорциональности между частотой и минимальной порцией энергии. Постоянная, или квант действия, Планка - реальная величина, найденная экспериментально и обозначаемая латинской буквой h.

Электронные орбиты в атоме радия по Нильсу Бору микромир полный симметрии - фото 169

Электронные орбиты в атоме радия (по Нильсу Бору) - микромир, полный симметрии и красоты

Согласно Бору, на любом разрешенном в его модели энергетическом уровне (находящемся на определенном расстоянии от ядра) допускается одновременное пребывание не более некоторого максимального числа электронов. На основе модели Бора можно предсказать, сколько электронов имеет тот или иной атом и как они распределены вокруг его ядра.

К 1926 г. физики-атомщики выяснили, что каждому электрону и вообще всякой элементарной частице присущ «спин». В упрощенном модельном изображении мы представляем себе частицы как маленькие шарики, вращающиеся вокруг своей оси (подобно Земле!) ( По современным представлениям, спин (собственный момент импульса элементарной частицы) имеет квантовую природу, он не связан с движением частицы как целого в пространстве и не поддается описанию с позиций классической динамики, то есть не может быть представлен наглядно. - Прим. перев ). Этот спин нельзя ни увеличить, ни уменьшить, он всегда сохраняет постоянную величину. Спин элементарных частиц имеет постоянную величину; для большинства частиц он равен Л/2π, или просто 1/2 , как принято в сокращенной форме записи.

Распад πsupsup мезона Янг и Ли доказали что природа в данном случае - фото 170

Распад πsup+/sup -мезона. Янг и Ли доказали, что природа в данном случае действует несимметрично! В 'антимире' тоже существует лишь один вариант распада πsup+/sup -мезона

С этих пор нам стало известно, что атомы гораздо сложнее, чем предполагал Нильс Бор. Однако наиболее существенные идеи, положенные в основу модели Бора, - возможность описания строения атома с помощью квантовых чисел, ограничения, наложенные на электронные орбиты, - полностью справедливы и поныне.

ЗАГЛЯНИ В ЭЙНШТЕЙНА!

Неспециалистам в области физики из всей теории относительности знаком по большей части только парадокс времени, часто называемый также «парадоксом близнецов». Космический корабль со скоростью, близкой к световой, несется сквозь просторы Вселенной. Вследствие этого часы на нем должны идти медленнее, чем на Земле. Когда космонавты через два или три года (по их счету) возвратятся на Землю, то окажется, что там протекли столетия. Однако этим вопросом мы здесь заниматься не станем, а обратимся к проблемам симметрии, связанным с теорией относительности.

Математик Герман Вейль (1885-1955) рассмотрел (1929 г.), как будет вести себя элементарная частица, движущаяся в пространстве со скоростью, равной или близкой скорости света, и вместе с тем обладающая спином. Приняв в качестве модели вращающийся шар и следя за одной точкой на его поверхности, Вейль нашел, что эта точка прочертит в пространстве либо право-, либо левостороннюю винтовую линию, то есть спираль.

Пока наблюдатель стоит (или передвигается, но медленнее, чем «летит» шар), он видит приближение этой спирали, ее прохождение мимо него и наконец удаление при той же ориентации вплоть до исчезновения. Что произойдет, однако, если наблюдатель движется быстрее, чем частица? Подобные вопросы, затрагивающие относительные скорости двух движущихся тел, играют в теории Эйнштейна существенную роль.

Допустим (вместе с Вейлем), что для покоящегося наблюдателя частица имеет правый спин; тогда движущийся наблюдатель, летящий со сверхсветовой скоростью, увидит у той же частицы левый спин. Моделью сказанного может служить железнодорожный поезд, незаметно трогающийся с места. Глядя в окно, вы видите, что отъехал, и притом в обратном направлении, поезд, стоявший на соседнем пути. Но возможно ли в действительности наблюдение над спином, подобное тому, которое мы только что допустили? Нет! Ибо, согласно теории относительности, скоростей, превышающих скорость света, не бывает. Так что, если мы определили у выбранной Вейлем частицы правую спираль, то она и должна быть правой спиралью. И наоборот, если наблюдалась левая спираль, то она и есть левая спираль. Профессор Вейль просчитал все варианты этой задачи. Он полагал, что, уже исходя из одних только соображений симметрии, должны существовать частицы без массы с левыми или правыми спиралями. Но в ту пору еще не знали частиц, которые могли бы обладать теми свойствами, какие приписал им профессор Вейль. Поэтому его соображения не вызвали большого интереса. В последующие годы физики-атомщики совершили необычное открытие. Они обнаружили в атомных ядрах частицу, не несущую электрического заряда. Назвали ее нейтроном. При распаде нейтрона возникали положительно заряженный протон и отрицательно заряженный электрон. С сохранением заряда все было в порядке. Но точные измерения показали, что закон сохранения энергии и массы не выполняется.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вернер Гильде читать все книги автора по порядку

Вернер Гильде - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Зеркальный мир отзывы


Отзывы читателей о книге Зеркальный мир, автор: Вернер Гильде. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x