Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира
- Название:E=mc2. Биография самого знаменитого уравнения мира
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2009
- ISBN:978-5-389-00499-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира краткое содержание
В 1905 году, выведя свое знаменитое уравнение Е=mc2, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.
E=mc2. Биография самого знаменитого уравнения мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И мы не только увидели бы, как проносящиеся мимо нас машины становятся более тяжелыми и изменяются в размерах, мы также заметили бы, что время внутри них, похоже, течет медленнее. Если бы водитель протянул руку, чтобы включить CD-плеер, мы увидели бы, что рука его движется с крайней медлительностью. А после включения плеера звук исходил бы из него с мучительной неторопливостью, так что каждая рулада раннего Майкла Джексона походила бы на тягостный погребальный напев.
В такой картине мира «правильная» точка зрения попросту отсутствует — даже наблюдатель, находящийся в повисшем над этим странным городом вертолете дорожной полиции, подтвердил бы: да, машины действительно претерпевают странные изменения, а вот неподвижно стоящие на тротуарах люди выглядят «нормально». Но почему же они получили такой благоприятный статус, а движущиеся машины изменяются? На самом-то деле, ни водители машин, ни школьница на велосипеде никаких изменений не ощущают. Велосипедистка смотрит вокруг и обнаруживает, что руль ее велосипеда, ее тело и рюкзачок за спиной тяжелее отнюдь не стали. А вот люди, которых она оставляет позади, выглядят как-то странно. Это они приобретают бóльшую массу.
И сидящие в машинах пассажиры с ней согласятся. Плеер играет совершенно нормально, скажут они, молодой Майкл Джексон поет так же быстро, как пел всегда. Зато люди на улицах движутся замедленно и швейцары гостиниц, подзывающие такси для постояльцев, руки поднимают с немалым трудом, а щеки, собираясь посвистеть, раздувают, точно глубоководные рыбы.
В теории относительности все эти явления подытоживаются так: всякий, кто наблюдает за удаляющимся от него объектом, видит, что масса этого объекта растет, его размеры растягиваются и время для него растягивается тоже. Люди, стоящие на улице, видят, как это происходит с автомобилем; люди, сидящие, в автомобиле видят, как это происходит с теми, кто стоит на улице.
Человеку, прочитавшему это утверждение впервые, оно представляется бессмыслицей. Даже Эйнштейну поначалу трудно было принять его — в тот летний день, когда он еще работал над своей статьей, его томила во время длинной прогулки с Мишелем Бессо необъяснимая подавленность. Однако принять это утверждение нам трудно лишь потому, что мы никогда не взаимодействуем друг с другом на скоростях, близких к 300000000 м/с (а эффекты, возникающие при обычных для нас скоростях, слишком малы, чтобы мы их заметили). Представьте себе, скажем, музыкальный плеер, принесенный кем-то на пикник. С точки зрения человека, который стоит с ним рядом, плеер играет громко. Тому, кто уходит от него на несколько сот метров, музыка почти не слышна. Мы соглашаемся с тем, что ответа на вопрос, громко ли звучит плеер «на самом деле», не существует, — но лишь потому, что мы способны ходить достаточно быстро и можем отойти от него на сотни метров за довольно короткое время. А муравей или иное крохотное существо способны удалиться от плеера так далеко, чтобы громкость его звучания изменилась, лишь за сроки, равные продолжительности жизни нескольких поколений его сородичей. И ему наши представления о том, что для разных наблюдателей музыка может звучать с разной громкостью, показались бы попросту безумными.
На посвященном этой книге интернетовском сайте приводятся подробности относительно того, как физикам удается показать, что все это следует из простого утверждения о постоянстве скорости света. Однако нас окружает немалое число вполне привычных предметов, работающих с такими скоростями, на которых эти эффекты становятся заметными. Электроны, к примеру, летящие в обычном телевизоре к поверхности экрана, движутся так быстро, что если бы мы могли видеть их, то заметили бы возрастание их массы. И инженерам приходится учитывать это явление, когда они конструируют магниты, фокусирующие потоки электронов на поверхности экрана. Если бы они этого не делали, картинка получалась бы размытой.
Навигационные спутники Системы глобального позиционирования (СГП), которые летают высоко над нами и посылают координатные сигналы автомобилям, реактивным самолетам и участникам пеших походов, тоже движутся так быстро, что время на них — с нашей точки зрения — замедляется. Схемы портативных устройств СГП, с помощью которых мы определяем наше местоположение, как и схемы устройств более крупных, используемых банками для синхронизации платежей, спроектированы так, чтобы компенсировать это обстоятельство в соответствии с уравнениями, которые Эйнштейн вывел в 1905 году.
Эйнштейну всегда не очень нравился ярлык «относительность», прилипший к тому, что он создал. По его мнению, слово это создавало неверное впечатление, внушало мысль о том, что все преходяще, что никаких точных результатов получить больше не удастся. А это не так. Предсказания науки точны.
Ярлык этот способен ввести в заблуждение еще и потому, что все уравнения Эйнштейна образуют единство, что они взаимосвязаны. Несмотря на то, что каждый из нас может видеть происходящее во вселенной по-своему, оно должно быть достаточно синхронизированным для того, чтобы обеспечить сведение наших различных точек зрения в единую картину, гарантировать ее согласованность. Старые представления о том, что масса никогда не меняется, а время течет для всех одинаково, имеют смысл, лишь когда люди наблюдают за обычными, медленно движущимися объектами. Однако в по-настоящему широком мире представления эти не верны — тем не менее, и в нем существуют точные законы, показывающие, как они видоизменяются.
Достижения, подобные этому, случались в истории лишь считанное число раз. Представьте себе, что вам удалось создать хрустальную, сверкающую модель вселенной, которая умещается у вас в кулаке. А теперь раскройте ладонь и посмотрите, как эта модель стремительно расширяется, обретая всю полноту существования. Ньютон был первым человеком, проделавшим это еще в 1600-х: он создал законченную картину мира, которая описывалась лишь горсткой уравнений, но содержала также и правила, позволяющие создавать, опираясь на эту горстку, полноценный мир.
Эйнштейн стал следующим.
И словно для того, чтобы произвести на нас еще более сильное впечатление, и Эйнштейн, и Ньютон проделали бóльшую часть своей работы на третьем десятке лет и за немыслимо короткое время. Ньютон не смог вернуться в университет, закрытый по причине чумы, и потому застрял на ферме матери в Линкольншире; в его распоряжении оказалось примерно восемнадцать месяцев, за которые он успел создать фундаментальные труды — разработать математический анализ, открыть закон всемирного тяготения и развить ключевые понятия применимой ко всей вселенной механики. Эйнштейн в 1905-м управился примерно за восемь месяцев, — при этом он еще и работал с понедельника по субботу в патентном бюро, — именно за этот срок он создал первую свою теорию относительности, вывел уравнение E=mc 2и помог проложить путь к лазерам, компьютерным чипам, ключевым аспектам современных фармацевтической и биоинженерной индустрий и все коммутирующим устройствам Интернета. Он действительно пребывал, — как сказал некогда о себе двадцатилетнем Ньютон — «в лучшем для изобретательства возрасте». Подобно Ньютону, Эйнштейн пробился за границы известного, объединил то, что до него оставалось разъединенным, и задался вопросами о верности того, что до него все просто-напросто принимали как данность.
Читать дальшеИнтервал:
Закладка: