Мартин Гарднер - Есть идея!

Тут можно читать онлайн Мартин Гарднер - Есть идея! - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Мир, год 1982. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Мартин Гарднер - Есть идея! краткое содержание

Есть идея! - описание и краткое содержание, автор Мартин Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.

Рассчитана на самый широкий круг читателей.

Есть идея! - читать онлайн бесплатно полную версию (весь текст целиком)

Есть идея! - читать книгу онлайн бесплатно, автор Мартин Гарднер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Дик Ясно что в этом случае конечная точка маршрута не может совпадать с - фото 112

Дик. Ясно, что в этом случае конечная точка маршрута не может совпадать с исходной. Если же самолет вылетает из точки, расположенной на экваторе, то конечная точка маршрута оказывается примерно в 100 км от исходной точки.

Дик Если же самолет вылетает из точки расположенной в южном полушарии то - фото 113

Дик. Если же самолет вылетает из точки, расположенной в южном полушарии, то конечная точка будет отстоять от исходной более чем на 100 км.

Дэн Может ты хочешь поспорить на 2 доллара что самолет не мог вылететь - фото 114

Дэн. Может, ты хочешь поспорить на 2 доллара, что самолет не мог вылететь ниоткуда, кроме Северного полюса?

Дик принял пари и проиграл. Почему?

Предположим что самолет стартовал из точки расположенной на параллели А - фото 115

Предположим, что самолет стартовал из точки, расположенной на параллели А, отстоящей на расстояние 116 км от Южного полюса, и пролетел к югу 100 км.

Пролетев 100 км на восток он совершит полный оборот вокруг Южного полюса - фото 116

Пролетев 100 км на восток, он совершит полный оборот вокруг Южного полюса. Пролетев затем 100 км на север, он непременно вернется в исходную точку.

Дик Ты прав вот твои 2 доллара Дэн Ставлю еще доллар что потвоему я не - фото 117

Дик. Ты прав, вот твои 2 доллара.

Дэн. Ставлю еще доллар, что, по-твоему, я не смогу указать других мест на земном шаре, вылетев откуда и пролетев сначала 100 км на юг, затем 100 км на восток и 100 км на север, самолет сможет вернуться в исходную точку. Под «другими местами» я понимаю точки, не лежащие на параллели А и не совпадающие с Северным полюсом.

Дик Тогда ставлю 50 долларов что таких точек на земном шаре нет Бедный Дик - фото 118

Дик. Тогда ставлю 50 долларов, что таких точек на земном шаре нет.

Бедный Дик снова проиграл Какую важную идею он упустил из виду Откуда - фото 119

Бедный Дик снова проиграл. Какую важную идею он упустил из виду?

Откуда вылетать?

Заключая второе пари, Дик упустил из виду весьма важное обстоятельство: точка, откуда вылетает самолет, может быть выбрана так близко от Южного полюса, что, пролетев 100 км на восток, он опишет вокруг полюса не один оборот, как в предыдущем решении, а два полных оборота. Так возникает новая параллель, все точки которой служат решениями исходной задачи. Аналогичным образом самолет может вылететь из любой точки еще меньшей окружности и, держа курс на восток, совершить три, четыре и т. д. оборота вокруг полюса. При любом целом положительном n можно указать соответствующую параллель, вылетев из любой точки которой и держа курс на восток, самолет совершит n оборотов вокруг полюса. Следовательно, точки, из которых может вылететь самолет, заполняют бесконечно много параллелей, стягивающихся к полюсу,

А вот еще одна навигационная задача, связанная с замечательной кривой на сфере — локсодромой, или линией постоянного курса. Самолет вылетает из точки, расположенной на экваторе, и берет курс на северо-восток. Где закончится его полет, если запасы горючего можно считать неограниченными? Какова длина маршрута и как он выглядит?

Возможно, вы удивитесь, когда узнаете, что маршрут полета имеет вид спирали, пересекающей все меридианы под одним и тем же углом и заканчивающейся на Северном полюсе. Такую кривую правильнее было бы рассматривать как винтовую линию, навитую на сферу, стягивающуюся к Северному полюсу и успевающую описать вокруг полюса бесконечно много витков. Если самолет условно принять за точку, то маршрут, хотя и успевает совершить бесконечно много оборотов вокруг полюса, имеет конечную длину, которая поддается вычислению. Следовательно, поддерживая в полете постоянную скорость, самолет достигнет Северный полюс за конечное время.

При нанесении на плоскую карту форма локсодромы искажается в зависимости от выбора картографической проекции. На меркаторской проекции, известной по карте мира, локсодрома переходит в прямую. Именно поэтому меркаторская проекция находит столь широкое применение в решении навигационных задач. Если судно или самолет следуют постоянным курсом, то, чтобы проложить его на карте, достаточно провести прямую.

А что произойдет, если самолет, взлетев с Северного полюса, возьмет курс на юго-запад? Эта задача обратна предыдущей. Полет, как и прежде, будет происходить по локсодроме, но сказать, где приземлится самолет в конце пути, мы не можем. В этом можно легко убедиться, обратив время: из какой бы точки, расположенной на экваторе, ни вылетел самолет, он, двигаясь вспять, неизменно окажется на Северном полюсе. Если же самолет, достигнув экватора, пересечет его и будет лететь тем же курсом, то локсодрома стянется к Южному полюсу.

При проецировании на плоскость, касательную к полюсу (и параллельную плоскости экватора), локсодрома переходит в равноугольную, или логарифмическую, спираль. Эта спираль пересекает радиус-вектор под постоянным углом.

Задача о четырех жуках, входит в сокровищницу занимательной математики. Она также связана с построением маршрутов и логарифмической спиралью, но допускает неожиданно простое решение, избавляющее от необходимости производить утомительные выкладки. Вы познакомитесь с ней, прочитав небольшой рассказ о семействе Пицца и их любимцах — четырех черепашках.

Том Пицца, тренер и художественный руководитель черепашек, выдрессировал своих питомцев так, что Абнер ( A ) всегда полз к Берте, Берта ( B ) — к Чарлзу, Чарлз ( C ) — к Далиле ( D ) и Далила — к Абнеру. Однажды он расставил черепашек по углам квадратной комнаты так, что они образовали вершины квадрата ABCD , включил секундомер и принялся наблюдать за тем, что произойдет.

— Интересно получается, сынок, — сказал мистер Пицца. — Каждая черепашка ползет прямиком к своему соседу справа. Все черепашки движутся с одинаковой скоростью и поэтому в любой момент времени находятся в вершинах некоторого квадрата (рис. 9 ).

И квадрат этот все время поворачивается и уменьшается добавил Том - фото 120

— И квадрат этот все время поворачивается и уменьшается, — добавил Том. — Смотри! Видишь? Черепашки сошлись в центре!

Предположим, что каждая черепашка ползет с постоянной скоростью 1 см/с и что комната, где они находятся, имеет форму квадрата со стороной 3 м. Через сколько времени черепашки встретятся в центре комнаты? (Каждую черепашку мы условно принимаем за точку.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Есть идея! отзывы


Отзывы читателей о книге Есть идея!, автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x