Вилен Барабой - Солнечный луч

Тут можно читать онлайн Вилен Барабой - Солнечный луч - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Наука, год 1976. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вилен Барабой - Солнечный луч краткое содержание

Солнечный луч - описание и краткое содержание, автор Вилен Барабой, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.

Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР

Солнечный луч - читать онлайн бесплатно полную версию (весь текст целиком)

Солнечный луч - читать книгу онлайн бесплатно, автор Вилен Барабой
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Концентрация лучистой энергии во времени и пространстве

Почему вынужденное излучение не наблюдается обычно? И что нужно сделать, чтобы лазерный луч зажегся? На первый из этих вопросов ответить относительно просто. Чтобы получить вынужденное излучение, иными словами, чтобы добиться усиления приходящего извне света нужной частоты, необходимо иметь вещество, в котором большое количество электронов находилось бы на высших электронных уровнях возбуждения. А как этого добиться? Быть может, простым нагревом?

При повышении температуры, как известно, увеличивается количество атомов, энергия которых достаточно высока, чтобы забросить электрон на один из возбужденных уровней. Но эти переходы кратковременны, независимы друг от друга и, следовательно, хаотичны. В каждый данный момент все-таки подавляющее большинство электронов оказывается на основном, невозбужденном уровне.

Что произойдет в этом случае с квантами внешнего излучения, частота колебаний которых совпадает с разницей энергетических уровней вещества? Они попросту поглотятся веществом, израсходуются на возбуждение его электронов. Следовательно, для получения вынужденного излучения нужно сначала добиться перехода на уровень возбуждения большей части электронов вещества, достичь, выражаясь языком специалистов, инверсной (т. е. обратной) заселенности энергетических уровней. Если большинство электронов пребывает на уровне возбуждения, прохождение квантов резонансной частоты вызовет их массовый и одновременный соскок на основной уровень. Иными словами, инверсная заселенность — необходимое условие усиления света за счет вынужденного излучения.

Эти рассуждения, вытекающие в сущности из работ Эйнштейна, позволили в 1940 г. советскому физику В. А. Фабриканту предположить, что вынужденное излучение можно использовать для усиления светового потока. В годы Великой Отечественной войны эти работы прервались и возобновились только в 1951 г. Они завершились заявкой на изобретение. Однако дальнейшие шаги в направлении создания оптических квантовых генераторов (лазеров) суждено было сделать другим ученым — Н. Г. Басову и А. М. Прохорову в СССР, Ч. Таунсу в США. Первый действующий лазер был построен Т. Майманом в США в 1960 г.

В качестве рабочего вещества для возникновения вынужденного излучения в первых лазерах использовали стержни из искусственного рубина — кристалла окиси алюминия с небольшой (0,05—0,5%) примесью атомов хрома, придающих кристаллу красный цвет. Они-то и играют главную роль в возникновении стимулированного излучения, так как их электроны способны при возбуждении довольно длительно (3·10 -3сек) задерживаться на метастабильном уровне.

Если рубиновый стержень поместить внутрь спирально изогнутой мощной лампы (чаще всего ксеноновой), то такой рубиновый сердечник будет довольно равномерно освещаться лампой. Из широкого спектра свечения лампы какая-то одна группа частот окажется резонансной: при мощной вспышке лампы электроны атомов хрома одновременно (пусть на короткие доли секунды) взлетят на уровень возбуждения. Чтобы это произошло, вспышка ксеноновой лампы осуществляется разрядом батареи конденсаторов.

Итак, высший уровень возбуждения в атомах хрома заселен электронами. Дальше события развиваются молниеносно. Квант резонансной частоты (то ли высвеченный криптоновой лампой, то ли возникший в атоме хрома при разрядке метастабильного состояния), пролетая мимо возбужденного электрона, вызывает и его разрядку, освобождая второй, подобный себе квант. Если каждый из этих фотонов разрядит еще по одному возбужденному атому, количество фотонов снова удвоится. Налицо усиление света за счет вынужденного излучения.

Но лазер — детище второй половины XX в.— способен на большее. Если у торцов рубинового стержня установить зеркала (или нанести непосредственно на торцы, отражающий слой серебра), поток света, усиленного в стержне, отразится от зеркала, вернется в кристалл, отразится от второго зеркала и т. д. При каждом отражении интенсивность света возрастает за счет разрядки возбужденных атомов хрома. А возбуждение последних поддерживается периодическими импульсами ксеноновой лампы, которые как бы накачивают в кристалл энергию электронного возбуждения. Отсюда и название — «лампа накачки».

Интенсивность света в такой системе могла бы возрастать очень сильно. Но перегрев стержня прекращает генерацию вынужденного излучения. Поэтому в конструкции рубинового лазера — самого распространенного типа оптических квантовых генераторов в наши дни — предусмотрены, во-первых, охлаждение стержня и, во-вторых, своевременный отвод лучистой энергии. Одно из торцевых зеркал делается полупрозрачным, и когда лихорадочно (со скоростью света!) мечущийся внутри стержня от торца к торцу поток излучения достигает гигантской плотности, он вырывается наружу в виде мгновенного (длительностью в тысячные доли секунды) всплеска излучения невиданной яркости.

Рубиновый лазер генерирует излучение в красной области спектра с длиной волны 6943 А (небольшая часть излучения приходится на волну 6929 А). В энергию лазерного импульса преобразуется лишь небольшая часть энергии, излучаемой лампой накачки. Иными словами, коэффициент полезного действия рубинового лазера невелик — около 1%. Но это сравнительно небольшое количество лучистой энергии (мощность современных рубиновых лазеров колеблется от 1—2 до нескольких сот ватт) концентрируется прежде всего в пространстве — в узкий, практически не расходящийся пучок, а также во времени — в короткий импульс излучения. Если лазер генерирует лучистую энергию мощностью 1 Вт (т. е. 1 Дж. в секунду) [Джоуль равен 107 эрг.] и импульсы излучения продолжительностью в 0,001 сек следуют друг за другом с интервалом в 1 сек, то во время каждого импульса концентрация энергии в пучке достигает 1000 Дж. Особенности лазерного излучения, прежде всего его монохроматичность и когерентность, облегчают задачу концентрирования пучка в пятно ничтожного диаметра. Расчеты показывают, что предел концентрации — размер, соответствующий половине длины .волны света, т. е. для рубинового лазера минимальный возможный диаметр пятна — 0,2 мкм. Практически достигнутый предел — несколько меньше 1 мкм.

При такой фокусировке светового луча плотность энергии на единицу площади еще более фантастически возрастает, достигая совершенно невероятных величин, не осуществимых никаким иным способом. Но и это еще не предел — мощность лазерных установок непрерывно возрастает. Кроме того, есть еще один резерв — уменьшение длительности каждого отдельного импульса.

В обычном рубиновом лазере полупрозрачное зеркало препятствует слишком раннему разряду; световой импульс вырывается наружу лишь после достижения какой-то критической плотности светового потока. Если затвор на выходе из кристалла сделать более плотным, концентрацию световой энергии можно еще более увеличить. Но зато и импульс прервется раньше — так что особого выигрыша получить не удастся. Очевидно, выход состоит в том, чтобы сделать затвор переменной плотности: когда световой поток внутри кристалла достигнет предельной плотности, достаточно «раскрыть шлюз», и разрядка даст гигантский импульс еще невиданной концентрации.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вилен Барабой читать все книги автора по порядку

Вилен Барабой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Солнечный луч отзывы


Отзывы читателей о книге Солнечный луч, автор: Вилен Барабой. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x