Владимир Сурдин - Разведка далеких планет

Тут можно читать онлайн Владимир Сурдин - Разведка далеких планет - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ФИЗМАТЛИТ, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Сурдин - Разведка далеких планет краткое содержание

Разведка далеких планет - описание и краткое содержание, автор Владимир Сурдин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Мечта каждого астронома — открыть новую планету. Раньше это случалось редко: одна — две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких — по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

На лицевой стороне переплета: Меркурий, Венера и Луна над австралийским комплексом радиотелескопов АТСА (Australia Telescope Compact Array) близ города Наррабри, Новый Южный Уэльс. Фото: Graeme L. White и Glen Cozens.

На обратной стороне переплета: телескоп «Вильям Гершель» диаметром 4,2 м, установленный на о. Пальма (Канарские о-ва). Лазерный луч используется для работы системы адаптивной оптики.

На форзаце: возможно, так с высоты птичьего полета выглядит поверхность Тритона, крупнейшего спутника Нептуна. Справа — планета, слева вдали — Солнце. Рисунок: ESO/Calgada L.

На нахзаце: возможно, так выглядит поверхность Плутона, покрытая наледями замерзшего метана. Слева — Харон, справа — Солнце, которое светит там в 1000 раз слабее, чем на Земле. Рисунок: ESO/Calgada L.

Разведка далеких планет - читать онлайн бесплатно ознакомительный отрывок

Разведка далеких планет - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Сурдин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Принципы адаптивной оптики. Запуск на орбиту в 1990 г. оптического телескопа «Хаббл» диаметром 2,4 м и его чрезвычайно эффективная работа в последующие годы доказали большие возможности телескопов, не обремененных атмосферными искажениями. Но высокая стоимость создания и эксплуатации космического телескопа заставила астрономов искать пути компенсации атмосферных помех у поверхности Земли. Появление быстродействующих компьютеров и, не в последнюю очередь, желание военных создать систему космического оружия с лазерами наземного базирования сделали актуальной работу по компенсации атмосферных искажений изображения в реальном времени. Система адаптивной оптики, выравнивая и стабилизируя фронт прошедшего сквозь атмосферу излучения, дает возможность не только получать в фокусе телескопа четкое изображение космического объекта, но и выводить с Земли в космос остро сфокусированный луч лазера. К счастью, военные устройства такого типа реализованы не были, но проделанная в этом направлении работа чрезвычайно помогла астрономам почти полностью реализовать теоретические параметры крупных телескопов по качеству изображения.

Обычно адаптивная система работает совместно с системой активной оптики, поддерживающей конструкцию и оптические элементы телескопа в идеальном состоянии. Действуя совместно, системы активной и адаптивной оптики приближают качество изображения к предельно высокому, определяемому принципиальными физическими эффектами (в основном дифракцией света на объективе телескопа).

В принципе системы активной и адаптивной оптики подобны друг другу. Обе они содержат три основных элемента: 1) анализатор изображения, 2) компьютер с программой, вырабатывающей сигналы коррекции, и 3) исполняющие механизмы, изменяющие оптическую систему телескопа так, чтобы изображение стало «идеальным». Количественное различие между этими системами состоит в том, что коррекцию недостатков самого телескопа (активная оптика) можно проводить сравнительно редко — с интервалом от нескольких секунд до 1 минуты, но исправлять помехи, вносимые атмосферой (адаптивная оптика), необходимо значительно чаще — от нескольких десятков до нескольких тысяч раз в секунду. Ясно, что с такой высокой частотой система адаптивной оптики не может изменять форму массивного главного зеркала телескопа и вынуждена управлять формой специального дополнительного легкого и мягкого зеркала, установленного у выходного зрачка телескопа

Реализация адаптивной оптики. Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 г. американский астроном Хорее Бэбкок (Babcock Н. W., 1912–2003). Для компенсации искажений он предложил использовать отражение света от масляной пленки, поверхность которой деформируется электростатическими силами. Тонкопленочные зеркала с электростатическим управлением разрабатываются для аналогичных целей и в наши дни, хотя более популярным исполнительным механизмом служат пьезоэлементы с зеркальной поверхностью.

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r 0 — радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r 0лежит в интервале от 2 до 20 см; условия, когда r 0=10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с применением длительной экспозиции, равно разрешению идеального телескопа диаметром r 0, работающего вне атмосферы. Поскольку значение r 0возрастает приблизительно пропорционально длине волны излучения (r 0∝λ 6/5), атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Для небольших наземных телескопов диаметр которых сравним с Го можно считать - фото 70

Для небольших наземных телескопов, диаметр которых сравним с Го, можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости, или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра (D) на площади объектива укладывается порядка (D/ r 0 ) 2 квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т. е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов, с высокой частотой (до тысяч герц) изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D= 8-10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м/10 см) 2=10 000 управляемых элементов. При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r 0= 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики «Интерферометра Очень большого телескопа» (VLTI) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60 управляемых элементов.

Рис 335 Мгновенное изображение яркой звезды Веги полученное французским - фото 71
Рис. 3.35. Мгновенное изображение яркой звезды, Веги, полученное французским астрономом А. Лабейри на 5–метровом Паломарском телескопе при атмосферном качестве изображений 1,5". Именно такой угловой диаметр имеет вся эта «клякса» на фото, но состоит она из множества мелких частей — спеклов, каждый размером около 0,02". Спеклы — это результат интерференции света, прошедшего через объектив телескопа и получившего случайные фазовые задержки при прохождении через атмосферу.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Сквозь матрицу из множества небольших линз свет звезды попадает в ПЗС-камеру, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид. По сути, в этом‑то и заключается главная идея астрономической системы адаптивной оптики: нам заранее известно, каким в идеальном телескопе должно быть изображение звезды! Звезда должна выглядеть точкой (точнее, маленьким дифракционным кружочком). Искривив мягкое зеркало так, чтобы изображение звезды стало точкой, мы сделаем четкими и изображения всех соседних с ней объектов!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Сурдин читать все книги автора по порядку

Владимир Сурдин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Разведка далеких планет отзывы


Отзывы читателей о книге Разведка далеких планет, автор: Владимир Сурдин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x