Владимир Сурдин - Разведка далеких планет

Тут можно читать онлайн Владимир Сурдин - Разведка далеких планет - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ФИЗМАТЛИТ, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Сурдин - Разведка далеких планет краткое содержание

Разведка далеких планет - описание и краткое содержание, автор Владимир Сурдин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Мечта каждого астронома — открыть новую планету. Раньше это случалось редко: одна — две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких — по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

На лицевой стороне переплета: Меркурий, Венера и Луна над австралийским комплексом радиотелескопов АТСА (Australia Telescope Compact Array) близ города Наррабри, Новый Южный Уэльс. Фото: Graeme L. White и Glen Cozens.

На обратной стороне переплета: телескоп «Вильям Гершель» диаметром 4,2 м, установленный на о. Пальма (Канарские о-ва). Лазерный луч используется для работы системы адаптивной оптики.

На форзаце: возможно, так с высоты птичьего полета выглядит поверхность Тритона, крупнейшего спутника Нептуна. Справа — планета, слева вдали — Солнце. Рисунок: ESO/Calgada L.

На нахзаце: возможно, так выглядит поверхность Плутона, покрытая наледями замерзшего метана. Слева — Харон, справа — Солнце, которое светит там в 1000 раз слабее, чем на Земле. Рисунок: ESO/Calgada L.

Разведка далеких планет - читать онлайн бесплатно ознакомительный отрывок

Разведка далеких планет - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Сурдин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 64 Космический телескоп COROT слева подготовленный к запуску справа - фото 127 Рис 64 Космический телескоп COROT слева подготовленный к запуску справа - фото 128
Рис. 6.4. Космический телескоп COROT: слева — подготовленный к запуску; справа — в процессе наблюдения за прохождением планеты по диску звезды (рисунок D. Ducros, CNES). Размер спутника: длина 4,1 м, диаметр 2 м (без панелей солнечных батарей). Полная масса 630 кг, масса научной аппаратуры 300 кг. Точность наведения телескопа 0,5". Мощность канала связи 1,5 Гбит/сутки. Основной вклад в создание этой космической обсерватории внес Национальный центр космических исследований Франции (Centre national d'etudes spatiales — CNES).

По указанным причинам основная роль в поиске экзопланет, подобных Земле, отводится космическим инструментам. С декабря 2007 г. ведутся наблюдения на европейском спутнике COROT, телескоп которого диаметром 27 см имеет поле зрения около 3° и оснащен чувствительным фотометром. Поиск планет осуществляется методом прохождений. Обнаружено уже более дюжины «юпитеров» и даже одна планета, размер которой лишь на 70 % больше, чем у Земли. В 2009 г. на гелиоцентрическую орбиту выведен спутник «Кеплер» (NASA) с телескопом диаметром 95 см, способный непрерывно измерять блеск более 100 тыс. звезд в поле зрения 10°×10°. От него ждут массового обнаружения планет земного типа, но пока найдено лишь несколько «юпитеров» и один «нептун» (правда, в списке подозреваемых — сотни объектов).

Измерение положения звезды

Весьма перспективными считаются методы, в которых измеряется движение звезды, вызванное обращением вокруг нее планеты (табл. 6.3). В качестве примера вновь рассмотрим Солнечную систему. Сильнее всех на Солнце влияет массивный Юпитер: в первом приближении нашу планетную систему вообще можно рассматривать как двойную систему Солнце — Юпитер, компоненты которой разделены расстоянием 5,2 а. е. и обращаются с периодом около 12 лет вокруг общего центра масс. Поскольку Солнце примерно в 1000 массивнее Юпитера, оно во столько же раз ближе к центру масс. Значит, Солнце с периодом около 12 лет обращается по окружности радиусом 5,2 а. е./1000=0,0052 а. е., который лишь немногим больше радиуса самого Солнца. С расстояния а Кентавра (4,34 св. года = 275 000 а. е.) радиус этой окружности виден под углом 0,004". Это очень маленький угол: под таким углом мы видим толщину карандаша с расстояния в 360 км. Но астрономы умеют измерять столь малые углы и поэтому уже не сколько десятилетий ведут наблюдение за ближайшими звездами в надежде заметить их периодическое «покачивание», вызванное присутствием планет. В самое последнее время это удалось сделать с поверхности Земли, но перспективы астрометрического поиска экзопланет, безусловно, связаны с запуском специализированных спутников, способных измерять положения звезд с миллисекундной точностью.

Рис 65 Взаимное движение звезды и планеты Центр масс системы звезда - фото 129

Рис. 6.5. Взаимное движение звезды и планеты. Центр масс системы «звезда + планета» движется прямолинейно (пунктир). Звезда и планета обращаются вокруг центра масс по подобным орбитам в противофазе (вверху). Наблюдая звезду, можно заметить ее «покачивания», указывающие на присутствие планеты.

Измерение скорости звезды

Заметить периодические колебания звезды можно не только по изменению ее видимого положения на небе, но и по изменению расстояния до нее. Вновь рассмотрим систему Юпитер — Солнце, имеющую отношение масс 1:1 000. Поскольку Юпитер движется по орбите со скоростью 13 км/с, скорость движения Солнца по его собственной небольшой орбите вокруг центра масс системы составляет V= 13 м/с. Для удаленного наблюдателя, расположенного в плоскости орбиты Юпитера, Солнце с периодом около 12 лет меняет свою скорость с амплитудой 13 м/с.

Для точного измерения скоростей звезд астрономы используют эффект Доплера. Он проявляется в том, что в спектре звезды, движущейся относительно земного наблюдателя, изменяется длина волны всех линий: если звезда приближается к Земле, линии смещаются к синему концу спектра, если удаляется — к красному. При нерелятивистских скоростях движения эффект Доплера чувствителен лишь к лучевой скорости звезды, т. е. к проекции полного вектора ее скорости на луч зрения наблюдателя (прямую, соединяющую наблюдателя со звездой). Поэтому скорость движения звезды, а значит, и масса планеты определяются с точностью до множителя cos α, где α — угол между плоскостью орбиты планеты и лучом зрения наблюдателя. Вместо точного значения массы планеты (M) доплеровский метод дает лишь нижнюю границу ее массы (M×cos α).

Обычно угол а неизвестен. Лишь в тех случаях, когда наблюдаются прохождения планеты по диску звезды, можно быть уверенным, что угол а близок к нулю. Но у доплеровского метода есть два важных преимущества: он работает на любых расстояниях (разумеется, если удается получить спектр), и его точность почти не зависит от расстояния. В табл. 6.3 показаны характерные значения доплеровской скорости и углового смещения Солнца под влиянием каждой из планет. Плутон здесь присутствует как прототип планет — карликов.

Как видим, влияние планеты вызывает движение звезды со скоростью в лучшем случае метры в секунду. Можно ли заметить перемещение звезды с такой скоростью? До конца 1980–х гг. ошибка измерения скорости оптической звезды методом Доплера составляла не менее 500 м/с. Но затем были разработаны принципиально новые спектральные приборы, позволившие повысить точность до 10 м/с. Например, в прецизионном спектрометре Европейской южной обсерватории Ла-Силья (Чили) свет звезды пропускается сквозь кювету с парами йода, находящуюся в термостатированном помещении. Фиксируя относительное положение спектральных линий звезды и йода, удается очень точно измерять скорость звезды. Новая техника сделала возможным открытие экзопланет, определение их орбитальных параметров и масс.

Т аблица 6.3

Астрометрические (угловые) и доплеровские колебания Солнца под влиянием планет

Планета Угловые колебания при наблюдении с расстояния 3 пк, миллисекунды дуги Доплеровские колебания лучевой скорости при наблюдении в плоскости эклиптики, м/с Планета Угловые колебания при наблюдении с расстояния 3 пк, миллисекунды дуги Доплеровские колебания лучевой скорости при наблюдении в плоскости эклиптики, м/с
Меркурий 0,00002 0,008 Сатурн 0,89 2,8
Венера 0,00058 0,086 Уран 0,27 0,3
Земля 0,00098 0,089 Нептун 0,51 0,3
Марс 0,00016 0,008 Плутон 0,00008 0,00003
Юпитер 1,6 13

По существу, этот же метод используют и радиоастрономы, с высокой точностью фиксирующие моменты прихода импульсов от радиопульсаров и тем самым (по времени запаздывания сигнала) определяющие периодические смещения нейтронной звезды относительно Солнца. Это позволяет обнаруживать невидимые объекты, обращающиеся вокруг радиопульсаров. Вообще, метод хронометража (тайминга) требует лишь наличия стабильного «генератора импульсов», в роли которого может выступать пульсирующий или вращающийся белый карлик, тесная двойная звезда и т. п.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Сурдин читать все книги автора по порядку

Владимир Сурдин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Разведка далеких планет отзывы


Отзывы читателей о книге Разведка далеких планет, автор: Владимир Сурдин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x