Саймон Сингх - Книга шифров .Тайная история шифров и их расшифровки
- Название:Книга шифров .Тайная история шифров и их расшифровки
- Автор:
- Жанр:
- Издательство:Астрель
- Год:2007
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саймон Сингх - Книга шифров .Тайная история шифров и их расшифровки краткое содержание
Саймон Сингх получил степень кандидата наук по физике в Кембриджском университете. Во время работы продюсером на Би-би-си снял удостоенный награды Британской академии кино и телевидения документальный фильм «Великая теорема Ферма» и написал бестселлер под тем же названием.
Шифры используются с тех пор, как люди научились писать. В «Книге шифров» Саймон Сингх посредством волнующих историй о шпионаже, интригах, интеллектуальном блеске и военной хитрости показывает захватывающую историю криптографии.
<<Изложение Сингха сочетает в себе увлекательность и наиболее содержательный анализ из всех, которые я когда-нибудь видел. Как и всегда, он блещет способностью объяснять>>.
<<Гардиан>>
Книга шифров .Тайная история шифров и их расшифровки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Похоже, что у данной системы есть ряд славных свойств. Ева не может быть уверенной в точном перехвате зашифрованного сообщения, так что у нее нет никакой надежды и дешифровать его. Правда, данной системе присуща серьезная и, видимо, неразрешимая проблема: Боб находится в том же положении, что и Ева, так как у него также нет возможности узнать, какой поляризационной схемой воспользовалась Алиса для каждого из фотонов, и поэтому он тоже будет ошибаться при приеме сообщения. Очевидное решение проблемы — это согласование Алисой и Бобом, какую поляризационную схему они будут применять для каждого фотона. Для вышеприведенного примера Алиса и Боб должны иметь список, или ключ, с помощью которого будет прочитано + х + х х х + + х х. Однако мы теперь вновь вернулись к той же старой проблеме распределения ключей: каким образом Алиса должна безопасно передать список поляризационных схем Бобу?
Разумеется, Алиса могла бы зашифровать список поляризационных схем с помощью шифра с общим ключом, например, RSA, а затем отправить его Бобу. Представьте, однако, что мы живем в то время, когда RSA взломан, возможно, в результате создания мощных квантовых компьютеров. Система Беннета и Брассарда должна быть независимой и не опираться на RSA. В течение долгих месяцев Беннет и Брассард пытались придумать способ обойти проблему распределения ключей. В 1984 году оба они стояли на платформе станции Кротон-Хармон неподалеку от исследовательской лаборатории Томаса Дж. Уотсона компании IBM. Они ожидали поезд, который доставил бы Брассарда обратно в Монреаль, и проводили время в непринужденной беседе о злоключениях и бедствиях Алисы, Боба и Евы. Приди поезд на несколько минут раньше, они бы помахали друг другу рукой на прощание, а проблема распределения ключей так и осталась бы нерешенной. Но вместо этого — эврика! — они создали квантовую криптографию — самый стойкий вид криптографии, который был когда-либо придуман.
По их способу для квантовой, криптографии требуется три подготовительных этапа. Хотя эти этапы не включают в себя отправку зашифрованного сообщения, с их помощью осуществляется безопасный обмен ключом, с помощью которого позднее можно будет зашифровать сообщение.
Этап 1. Алиса начинает передавать случайную последовательность из 1 и 0 (биты), используя для этого случайным образом выбираемые ортогональные (горизонтальная и вертикальная поляризации) и диагональные поляризационные схемы. На рисунке 76 показана такая последовательность фотонов, движущихся к Бобу.
Этап 2. Боб должен измерить поляризацию этих фотонов. Поскольку он не имеет представления, какой поляризационной схемой Алиса пользовалась для каждого из фотонов, то в произвольном порядке выбирает +-детектор и Х — детектор. Иногда Боб выбирает правильный детектор, иногда — нет. Если Боб воспользуется не тем детектором, то он вполне может неправильно распознать фотон Алисы. В таблице 27 указаны все возможные случаи. К примеру, в верхней строке для посылки 1Алиса использует ортогональную схему и поэтому передает ; далее Боб использует правильный детектор, определяет
и выписывает 1в качестве первого бита последовательности. В следующей строке действия Алисы те же самые, но Боб теперь использует неверный детектор, и поэтому он может определить
или
, что означает, что либо он верно выпишет 1, либо неверно — 0.
Этап 3. К этому моменту Алиса уже отправила последовательность 1и 0, а Боб уже определил их; какие-то правильно, какие-то — нет. После этого Алиса звонит Бобу по обычной незащищенной линии и сообщает ему, какую поляризационную схему она использовала для каждого фотона, но не как она поляризовала каждый из фотонов. Так, она может сказать, что первый фотон был послан с использованием ортогональной схемы, но не скажет, какой это был фотон: или
. Боб сообщает Алисе, в каких случаях он угадал с правильной поляризационной схемой. В этих случаях он, несомненно, измерил правильную поляризацию и верно выписал 1или 0. В конечном итоге Алиса и Боб игнорируют все те фотоны, для которых Боб пользовался неверной схемой, и используют только те из них, для которых он угадал с правильной схемой. В действительности они создали новую, более короткую последовательность битов, состоящих только из правильных измерений Боба. Весь этот этап изображен в виде таблицы в нижней части рисунка 76.
Благодаря этим трем этапам, Алисе и Бобу удалось образовать общую согласованную последовательность цифр, 11001001, которая показана на рисунке 76. Ключевым для этой последовательности является то, что она случайна, поскольку получена из исходной последовательности Алисы, которая сама была случайной. Более того, события, когда Боб использует правильный детектор, сами являются случайными. Поэтому данная согласованная последовательность может использоваться в качестве случайного ключа. И вот теперь-то можно начать процесс зашифровывания.
Рис. 76 Алиса передает последовательность из 1 и 0 Бобу. Каждая 1 и каждый О представлены поляризованным фотоном в соответствии либо с ортогональной (горизонтальная и вертикальная поляризации), либо с диагональной поляризационной схемой. Боб измеряет каждый фотон с помощью либо своего ортогонального, либо диагонального детектора. Он выбирает правильный детектор для самого первого фотона и верно определяет его как 1. Однако для следующего фотона его выбор детектора неверен. По случайности он правильно определил его как 0, но позднее этот бит будет тем не менее отброшен, поскольку Боб не может быть уверен, что он измерил его правильно.
Таблица 27 Все возможные случаи на втором этапе при обмене фотонами между Алисой и Бобом.
Эта согласованная случайная последовательность может использоваться в качестве ключа для шифра одноразового шифрблокнота. В главе 3 описывается, каким образом случайный набор букв или цифр — одноразовый шифрблокнот — может создать нераскрываемый шифр — не практически, а абсолютно нераскрываемый. Ранее говорилось, что единственная проблема с одноразовым шифрблокнотом — это сложность его безопасной доставки, но способ Беннета и Брассарда решает эту проблему. Алиса и Боб достигли договоренности об одноразовом шифрблокноте, а законы квантовой физики фактически не позволяют Еве успешно его перехватить. Теперь самое время стать на место Евы, после чего мы увидим, почему она не сумеет перехватить ключ.
Читать дальшеИнтервал:
Закладка: