Коллектив авторов - Современная космология: философские горизонты
- Название:Современная космология: философские горизонты
- Автор:
- Жанр:
- Издательство:Издательство «Канон+»
- Год:2011
- Город:Москва
- ISBN:978-5-88373-257-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Современная космология: философские горизонты краткое содержание
Книга представляет собой исследование некоторых философских и эпистемологических проблем космологии. Проанализированы философские позиции классиков космологии XX века (А.А. Фридмана и др.), а также ряда выдающихся современных космологов. Космология вовсе не является одной из «иронических наук», какой ее иногда изображают. Физическая реальность в космологии проявляется как выраженная в языке науки фиксация результатов взаимодействия наблюдателя с исследуемым объектом (осуществляемым через средства и условия познания). Смысл этого понятия в контексте данного типа научной рациональности раскрывается истинной теорией. Показано, что космология, по сути, переходит от традиционных методов исследования к нетрадиционным, т. е. совершаются изменения в ее основаниях, навязываемые новыми типами исследуемых объектов. Отмечена необходимость коренного изменения смыслов традиционных понятий в космологии, таких как пространство, время, бесконечность. Проанализированы условия и границы их применимости в рамках новых космологических теорий. Особое внимание уделено новым фундаментальным понятиям, появившимся в космологии за последние годы: Мультиверс (Метавселенная), космологический вакуум, темная материя, темная энергия, ускоренное расширение Вселенной и др. По некоторым проблемам, находящимся на переднем крае современной космологии, ведется дискуссия между авторами книги. Сделана попытка показать эвристическую роль философии в осмыслении указанных проблем.
Книга рассчитана на философов, космологов и всех, интересующихся философскими проблемами современной науки.
Современная космология: философские горизонты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кроме относительной плотности Ω важным космологическим параметром, который играет одну из основных системообразующих ролей в раскрытии содержания современного представления понятия «Вселенная», является постоянная Хаббла. Уточнению её значения различными методами посвящено множество работ, список которых ежемесячно увеличивается на несколько десятков. В разных источниках указаны разные значения Н, правда, не сильно отличающиеся друг от друга. Например: Н = 72 км/с∙Мрс (Мрс — Мега параллакс секунда — расстояние, равное приблизительно 3∙10 19км) в одной из них [347] Reid David D„Kittell Daniel W„Arsznov Eric E., Thompson Gregory B. The picture of our universe: A view from modern cosmology // arXiv: astro-ph/0209504 v2.
, в дру-гой работе [348] Deustua Susana Е., Caldwell Robert, Garnavich Peter, Hui Lam, Re-fregier Alexandre. Cosmological Parameters, Dark Energy and Large Scale Structure // arXiv: astro-ph/0207293 vl
указано два значения Н, померенные различными методами: Н = 72 ± 7 км/с∙Мрс и Н = 59 ± 6 км/с∙Мрс , а, кроме того Н = 71 ±6 км/с ∙Мрс [349] Kinney William H. Cosmology, Inflation, and the Physics of Nothing // arXiv: astro- ph/0301448 vl
, Н = 70 ± 8 км/с ∙Мрс [350] Krauss Lawrence M. The State of the Universe: Cosmological Parameters 2002. // arXiv: astro-ph/0301012 v2
, Н = 67 ± 7 км/с∙Мрс [351] Peebles P.J.E. The Cosmological Constant and Dark Energy // arXiv: astro-ph/0207347 v2.
, у В.Л. Гинзбурга [352] Гинзбург В.Л. О некоторых успехах физики и астрономии за последние три года // Успехи физических наук — 2002. — Том 172, № 2. -С.213–219.
приведено несколько значений: Н = 64 ± 13 км/с ∙Мрс, Н = 71 ±8 км/с ∙Мрс. Результаты, получаемые и в настоящее время, существенным образом не изменяют картину и дают примерно те же значения, например: Н = 73 ± 9 км/с∙Мрс и Н = 62.3 ± 6.3 км/с ∙Мрс [353] Marina Seikell, DominikJ. Schwarz. How strong is the evidence for accelerated expansion? // arXiv: astro-ph0711.3180v 1
.
Зная Н, можно легко установить возраст нашей Вселенной, однако, он будет зависеть от соотношения плотности вакуума и материи [354] См . Krauss Lawrence M. The State of the Universe: Cosmological Parameters 2002 // arXiv: astro-ph/0301012 v2
. Там же приведена эта зависимость для Н = 70 ± 8 км/с∙Мрс. Если Ω E = 0, а Ω В = 1, тогда t 0= 9.7 ± 1, если Ω E = 0.8, а Ω В = 0.2, тогда t 0= 15.3 ± 1.5, если Ω E = 0.7, а Ω В= 0.3, тогда t 0=13.7 ± 1.4, если Ω E = 0.65, а Ω В = 0.35, тогда t 0=12.9 ± 1.3, где t 0— время, прошедшее от начала расширения Вселенной, взятое в миллиардах лет.
Такова, в общих чертах, Вселенная в своих основных системообразующих свойствах и качествах, с точки зрения современных, впрочем, быстро меняющихся представлений.
Г. И. Наан
Проблема бесконечности принадлежит к числу «вечных» проблем науки, привлекающих пристальное внимание математиков, естествоиспытателей и философов.
Пограничный характер проблемы бесконечности, необходимость ее разработки общими усилиями представителей естествознания, математики и философии уже подчеркивался автором [355] Наан Г.И. О бесконечности Вселенной // Вопросы философии. № 6, 1961.
. Однако и сейчас существуют точки зрения о том, что проблема относится всецело к компетенции естественных наук либо, наоборот, «исключительно» или хотя бы «прежде всего» к компетенции философии (см., например [356] Свидерский В. И. О философском понимании конечного и бесконечного // Вопросы философии. № 6, 1964.
). Не столь важно, по какому «ведомству» — естественнонаучному или философскому — числить проблему, гораздо важнее, чтобы она разрабатывалась на современном научном уровне; а это возможно только при участии представителей разных отраслей математики, физики, астрономии, философии. Иными словами, не следует стремиться к тому, чтобы пограничная проблема была предметом пограничного конфликта.
В современной науке проблема бесконечности стала чрезвычайно многогранной. Бурное развитие математики за последние сто лет привело к открытию ряда новых, чрезвычайно интересных аспектов бесконечного, а успехи космологии показывают, что они имеют реальные прообразы в природе. Легче всего заниматься бесконечностью, если обо всем этом ничего не знать: невинность рождает отвагу. Многогранность проблемы рождает также соблазн расчленить бесконечность на разные, мало связанные бесконечности-омонимы (философскую, космологическую, ряд математических). Если учесть еще, что термин «Вселенная» только в физико-математических науках применяется в пяти — шести разных значениях, то оказывается возможным придавать самый различный смысл словосочетанию «бесконечность Вселенной».
По-видимому, не было сделано попыток классификации типов бесконечности или хотя бы составления их перечня. Предлагаемый ниже обзор, вероятно, также не является исчерпывающим.
Выдвигаемая на обсуждение симпозиума точка зрения в известном смысле противоположна очерченной выше. Делается попытка найти единство в многообразии, трактовать различные аспекты бесконечности в математике, физике, астрономии и философии как различные отражения одной и той же реальности — реальной бесконечности реальной Вселенной.
2.1. Практическая бесконечность отличается тем, что а) является исторически первым и логическим простейшим представлением о бесконечности; б) несмотря на это чаще всего и вполне успешно применяется во всех физических приложениях математики, кроме, разве, космологических; в) вместе с тем имеет меньше всего отношения к бесконечности в более строгом ее понимании.
Практически-бесконечное означает «достаточно большое (малое, близкое, далекое)». Что считать здесь доста-точным, это всецело зависит от конкретных условий рассматриваемой задачи. Бесконечно большими в этом смысле могут быть и расстояния в 10 13, и в 10 -13см (первое в астрономии, второе — в физике элементарных частиц). С точки зрения математика (во всяком случае, представителя классической математики), первая величина ничуть не ближе к бесконечно большому, чем вторая, а вторая представляет бесконечно малую ничуть не в большей мере, чем первая.
Несмотря на кажущуюся примитивность понятия практической (физической) бесконечности, уже в связи с ним могут быть поставлены некоторые далеко идущие вопросы.
2.1.1. Уже здесь мы сталкиваемся с противоречивостью бесконечного, с необходимостью рассматривать взаимоисключающие противоположности в их нераздельном единстве.
Математика не допускает замены бесконечного каким бы то ни было конечным, сколь бы велико (мало) ни было последнее, поскольку они суть взаимоисключающие противоположности. Физика же делает такую замену буквально на каждом шагу, и получающиеся при этом результаты неизменно оказываются правильными. Этим демонстрируется весьма убедительным образом если не тождество, то единство противоположностей.
Читать дальшеИнтервал:
Закладка: