Чарльз Флауэрс - 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА

Тут можно читать онлайн Чарльз Флауэрс - 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Чарльз Флауэрс - 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА краткое содержание

10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА - описание и краткое содержание, автор Чарльз Флауэрс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В увлекательной форме рассказывается о 10 величайших открытиях двадцатого столетия: расширяющейся вселенной, распространении света, квантовой механике, блуждании континентов, теории большого взврыва, теореме о неполноте, геноме человека, открытиях антропологов, искусственном интеллекте, бессознательном.

Для старшеклассников, преподавателей и широкого круга читателей, интересующихся состоянием современной науки

10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА - читать онлайн бесплатно полную версию (весь текст целиком)

10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА - читать книгу онлайн бесплатно, автор Чарльз Флауэрс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1931 г., когда Австрия и ее столица Вена уже жили в тревожном ожидании фашизма, 25-летний Курт Гёдель сумел показать, что в научных и математических доказательствах всегда реально существуют «провалы» и «белые пятна». Задолго до этого многие философы и лингвисты (к их числу следует отнести, прежде всего, великого Людвига Виттген-штейна) чувствовали и пытались угадать или определить законы, ограничивающие способность человеческого языка описывать реальность, однако именно Гёделю удалось большее – он сумел показать, что такие ограничения существуют и внутри языка самой математики.

По складу характера Гёдель относился к тем, кого называют «не от мира сего». С ранней юности он отличался ипохондрией, чудаковатостью и нестандартностью поведения. Например, шокируя добропорядочную буржуазную семью, Гёдель женился на своей давнишней подруге Адель, которая не только уже была замужем, но и работала танцовщицей в ночном клубе. Некую странность более высокого порядка можно усмотреть и в том, что Гёдель, приступая к своей главной работе, стремился найти основы математики, а вовсе не обрушить их. Исследования логики привели его к отрицанию логики.

Еще в XIX веке математику сотрясали драматические события, когда под сомнение были взяты аксиомы евклидовой геометрии, казавшейся совершенно незыблемой и бесспорной (по учебнику Евклида человечество изучало геометрию около 2000 лет подряд, начиная с античности). Каждый из нас со школьных лет помнит, что параллельные прямые никогда не пересекаются и могут быть продолжены до бесконечности. В более строгой форме эта аксиома Евклида утверждает, что «через точку, не принадлежащую прямой, но лежащую в одной плоскости с ней, можно провести лишь одну прямую, параллельную первой». Мы говорим, естественно, об абстрактных геометрических понятиях и поэтому совершенно не касаемся проблем, связанных с истинной природой пространства-времени или другими физическими теориями.

Математики XIX века обобщили принципы геометрии и многое изменили в нашем восприятии, в результате чего стало возможным проведение нескольких параллельных прямых через одну точку, слияние этих прямых на бесконечности и многие другие, ранее немыслимые операции. Иными словами, в новой геометрии параллельные прямые просто перестали существовать.

Однако можно вспомнить, что геометрия Евклида имеет не только практическое значение, но связана и с так называемым «здравым смыслом», поскольку она создает некую последовательную, непротиворечивую и самосогласованную (эти определения являются исключительно важными для логического анализа) систему понятий. Особо следует отметить, что теоремы всех пяти томов курса геометрии Евклида не содержат ни одного противоречивого утверждения. Проблема для математики, в самом общем смысле, заключалась в том, что так называемые неевклидовы геометрии (независимо от их практической и познавательной ценности) также являются самосогласованными системами, что чрезвычайно удивляло и раздражало всех ученых с математическим складом ума. Действительно, представлялось поразительным, что явно бессмысленные построения могут быть сведены в логически безупречную и самосогласованную систему доказательств!

Пытаясь разобраться в возникшей ситуации, многие ведущие математики вдруг задумались о проблемах и судьбе своей родной науки, и это беспокойство прекрасно передает высказывание одного из крупнейших немецких специалистов начала XX века: «Логика является гигиеной математической науки, позволяющей сохранять ее идеи здоровыми и сильными». Можно ли было ожидать, что математика в целом окажется столь же увечной и беззащитной, как геометрия?

Читатель может догадаться, что после работ Гёделя ответ оказался неутешительным для математики!

***

Возвращаясь к мыслителям и философам Древней Греции, напомним, что Аристотель создал дедуктивную логику в форме силлогизмов, т. е. утверждений типа: если все х имеют свойство у, а некое z относится к х, то z также обладает свойством;;. Один из самых известных силлогизмов применительно конкретно к Гёделю можно сформулировать в виде:

Все люди смертны (первая посылка).

Гёдель – человек (вторая посылка).

Гёдель – умрет (вывод).

(Российский читатель может вспомнить, что в повести Л. Н. Толстого «Смерть Ивана Ильича» с воспоминания об этом силлогизме главный герой начинает осознавать неотвратимость собственной смерти и размышлять о смысле жизни. – Прим. Перев )

Большинство людей рассуждают именно так, даже не вдумываясь в тонкости логики, что и является основой здравого смысла. Мы все понимаем, что логические размышления позволяют получать правильные выводы из правильных посылок, однако следует напомнить, что те же древние греки обнаружили один существенный недостаток дедуктивной логики, а именно: она «буксует» в некоторых довольно простых ситуациях (этот дефект является малозаметным и безвредным в обыденной речевой практике). Древнегреческие философы сформулировали и один из самых известных парадоксов такого типа: «Эпименид утверждает, что критяне лжецы». Фокус этой простой фразы состоял в том, что Эпименид сам был критянином, так что,если он прав, то критяне лгут и, следовательно, он… говорит правду и т. д. Не стоит ломать голову над этим высказыванием, поскольку оно действительно не может быть проанализировано логически. Другой, более современный вариант этого же парадокса выглядит следующим образом: «Назовем деревенским парикмахером человека, бреющего тех жителей деревни, которые не бреются сами. Кто бреет самого парикмахера?».

Знаменитый английский математик и философ Бертран Рассел (известный, кстати, своими чудачествами) долгое время занимался такими парадоксами и даже придумал им интересную форму, предложив написать на двух сторонах одного листа бумаги следующую фразу: «Утверждение, написанное на обороте этого листа, ошибочно» (лист бумаги с таким утверждением на обоеих сторонах можно переворачивать бесконечно). Позднее Рассел писал в автобиографии: «…конечно, взрослому человеку не стоило тратить время на такие тривиальные шутки, но что мне оставалось делать?» Рассел стремился продемонстрировать, что некоторые, весьма простые утверждения не могут быть оценены с точки зрения формальной логики.

В 1900 г. великий немецкий математик Давид Гильберт опубликовал обращение к коллегам, где перечислил 23 проблемы, от решения которых, по его мнению, зависело все будущее развитие этой науки. Основная и принципиальная позиция Гильберта сводилась к тому, что математика должна быть исчерпывающей (т. е. способной ответить на все связанные с ней вопросы) и внутренне согласованной наукой (т. е. в ней не должно быть утверждений, на которые можно одновременно дать и положительный, и отрицательный ответы). Упомянутые Расселом «тривиальные шутки» приводят нас к той же проблеме: можно ли утверждать, что математические рассуждения являются полностью и всегда справедливыми? В математике нет места никаким лжецам-критянам с их двусмысленными загадками, допускающими неоднозначные или странные ответы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Флауэрс читать все книги автора по порядку

Чарльз Флауэрс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА отзывы


Отзывы читателей о книге 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА, автор: Чарльз Флауэрс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x