Пекка Теерикор - Эволюция Вселенной и происхождение жизни
- Название:Эволюция Вселенной и происхождение жизни
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пекка Теерикор - Эволюция Вселенной и происхождение жизни краткое содержание
Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».
«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.
«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.
Эволюция Вселенной и происхождение жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ньютон учился как все, но к тому же очень много читал. Это заметил профессор математики Исаак Барроу и стал давать ему книги из своей личной библиотеки. Поэтому, когда четыре года спустя Ньютон сдал выпускные экзамены, он уже хорошо разбирался в астрономии, математике, физике и химии. Он уже был готов создавать современную физическую науку.
Но кроме хорошо знакомого нами Ньютона-ученого был еще один Ньютон, изучавший алхимию, ставшую его любимым делом, и знавший Библию гораздо лучше многих теологов. Алхимия и Библия были его любимыми занятиями всю жизнь. По словам лорда Кейнеса, «он был последним из мудрецов, последним из вавилонян и шумеров, последним великим умом, который смотрел на видимый и интеллектуальный мир такими же глазами, как и те, кто начал создавать наше интеллектуальное наследие менее 10 000 лет назад».
В 1665 году по Англии прошла эпидемия чумы, и университет закрылся. Ньютон вернулся в свой родной Вулсторп. Позже он описал, как проводил там время. Вначале разработал «метод приближенного вычисления рядов и правило для преобразования в ряд двучлена любой степени». А затем…
«В мае того же года я нашел метод касательных Грегори и Шлюзиуса и уже в ноябре имел прямой метод флюксий, а в январе следующего года — теорию цветов, а в следующем за ним мае я имел начало обратного метода флюксий. В том же году я начал размышлять о том, что тяготение распространяется до орбиты Луны, и (найдя, как вычислить силу, с которой шар, катящийся внутри сферы, давит на ее поверхность) из кеплеровского правила периодов планет, находящихся в полукубической пропорции к расстоянию от центров их орбит, вывел, что силы, которые держат планеты на их орбитах, должны быть обратно пропорциональны квадратам расстояний от центров, вокруг которых они обращаются; и, таким образом, сравнив силу, требуемую для удержания Луны на ее орбите, с силой тяжести на поверхности Земли, я нашел, что они отвечают друг другу. Все это было в два чумных года — 1665 и 1666. Поскольку в те дни я был в расцвете творческих сил и думал о математике и физике больше, чем когда-либо после…»
Потрясающе! Но не многовато ли для начинающего физика? Впрочем, историки считают, что Ньютон на старости лет преувеличивал достижения своей юности. Возможно, он действительно думал обо всех этих вещах в годы Большой чумы, но многие из его работ были закончены значительно позже. По натуре Ньютон был замкнутым и не любил делиться всеми своими знаниями. Когда кто-либо другой начинал заниматься теми же проблемами, Ньютон старался побыстрее опубликовать свои результаты и завоевать первенство. Впоследствии начинался спор о том, кто первым получил результат. «Сдвинув» все свои наиважнейшие изобретения к чумным годам, Ньютон смог, хотя бы для себя, решить вопрос приоритета.
Когда в 1667 году Ньютон вернулся в Кембридж, он начал закладывать фундамент сразу нескольких областей науки. Его метод флюксий известен сегодня как дифференциальное и интегральное исчисление. В теории света его особенно интересовала природа цвета, а используя механику, он решил древнюю задачу о движении планет. В окончательной форме результаты появились много позже. «Математические начала натуральной философии» были изданы в 1687 году, а «Оптика» — в 1704 году (рис. 10.2).
«Начала» считаются наиболее важной работой в истории науки. Основную заслугу в том, что эта работа была начата, с Ньютоном могли бы разделить Лондонское Королевское общество, основанное в 1662 году, и особенно его члены — Кристофер Рен (1632–1723), Роберт Гук и Эдмунд Галлей. Когда Рен, вступая в должность профессора астрономии Оксфордского университета, произносил речь, он заявил, что важнейшей проблемой физики того времени является объяснение законов Кеплера. Он пророчествовал, что человек, который сможет это сделать, уже родился. И оказался прав: в это время Ньютону было уже 15 лет. Рен и Гук проводили опыты с маятниками, и это навело Гука на мысль, что движение планет является суммой тангенциального движения и «притягательного движения, направленного к центральному телу».
Рис. 10.2. Обложка первого издания «Начал».
Став в 1677 году секретарем Королевского общества, Гук попытался вступить в переписку с Ньютоном, который был широко известен своими математическими талантами. Гук полагал, что темой их переписки станет его гипотеза; он писал: «Осталось понять, по какой траектории будет двигаться тело под действием силы, обратно пропорциональной квадрату расстояния. Я не сомневаюсь, что Вы при помощи своего превосходного метода сможете определить, какова эта кривая и ее свойства, и предложите физическую причину этой зависимости».
Гук не получил ответа на свое послание. Возможно, именно поставленный Гуком вопрос вдохновил Ньютона, и в начале 1680-х годов он разработал свой закон всемирного тяготения, объяснив при этом и законы Кеплера. В те годы ученые уже обсуждали возможность того, что притяжение между Солнцем и планетами ослабевает пропорционально квадрату расстояния (так называемый закон обратных квадратов). Такой вывод можно сделать, объединив формулу Гюйгенса о центростремительном ускорении с Третьим законом Кеплера. Роберту Гуку это было известно, но он не мог сказать, способна ли изменяющаяся по такому закону сила создать орбиты в соответствии с Первым и Вторым законами Кеплера (эллипсы и равные площади).
Так и не найдя возможности начать обсуждение этой проблемы с Ньютоном, Гук в августе 1684 года послал к нему юного Эдмунда Галлея. Позже Ньютон описал все это Абрахаму де Муавру: «После недолгого разговора Галлей спросил Ньютона, как он думает, по какой кривой будут двигаться планеты, если предположить, что сила их притяжения к Солнцу обратно пропорциональна квадрату расстояния от него». Сэр Исаак тут же ответил, что это будет эллипс. Доктора Галлея это очень удивило и восхитило, и он спросил, откуда это известно? И сразу же попросил показать расчеты. Сэр Исаак поискал в своих бумагах, но не нашел их и обещал, что найдет свои расчеты, обновит их и перешлет Галлею…»
Ньютон решил назвать свои лекции так — «О движении тел по орбите». Эту работу он написал в виде девятистраничного трактата («De motu» — О движении) и в ноябре переслал Галлею. Под напором Галлея он продолжал писать и спустя два года издал «Начала» (при частичной финансовой поддержке Галлея).
Одним из важнейших понятий «Начал» стало всемирное тяготение. Это естественно, ведь притяжение удерживает нас на Земле. Что-то заставляет далекую Луну обращаться вокруг Земли, а планеты — обращаться вокруг Солнца. Неужели это одна и та же сила? Мы уже рассказывали, как Гюйгенс определил, что ускорение к центру для тела, движущегося по круговой орбите, равно квадрату скорости, деленному на радиус орбиты. Чтобы доказать, что сила всемирного тяготения меняется обратно пропорционально квадрату расстояния, Ньютон сравнил ускорение к центру Земли, действующее на ее поверхности, с тем ускорением, которое Земля оказывает на Луну, удаленную на 60 земных радиусов. Гравитационное ускорение на лунной орбите должно быть в 60 2раз меньше ускорения на поверхности Земли и равняться центростремительному ускорению Луны в направлении Земли. Зная радиус Земли, Ньютон предпринял это сравнение и подтвердил закон обратных квадратов. Великолепный результат! Из-за многократного уменьшения ускорения Луна за минуту падает настолько же, насколько за секунду падает яблоко на Земле.
Читать дальшеИнтервал:
Закладка: