Майкл Брукс - Тринадцать вещей, в которых нет ни малейшего смысла
- Название:Тринадцать вещей, в которых нет ни малейшего смысла
- Автор:
- Жанр:
- Издательство:Ломоносовъ
- Год:2012
- Город:Москва
- ISBN:978-5-91678-100-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Майкл Брукс - Тринадцать вещей, в которых нет ни малейшего смысла краткое содержание
Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…
Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».
Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».
Тринадцать вещей, в которых нет ни малейшего смысла - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Или может быть, это самое расширение сбило частоты радиоволн, несших информацию с борта на Землю? Впрочем, сами исследователи, выдвинувшие такое предположение, признали, что оно не выдерживает критики: в этом случае отклонение проявилось бы гораздо раньше, пока зонды еще можно было наблюдать визуально. А вдруг аномалия связана с тем, что фотоны сигнала изменили свои квантовые состояния или ускорились по законам нелинейной электродинамики (эту концепцию разработали в 2001 году двое бразильских физиков)? Или может быть, ответ надо искать в «экстрагравитации» Джона Моффата, сулящей заодно и разгадку темной материи? Приверженцы МОНД тоже считают, что их теория объясняет аномалию «Пионеров». Или, если взглянуть с изнанки, убедительно подтверждается таковой.
Ньето с ними не согласен. Гипотеза МОНД, по его мнению, вовсе не сочетается с данными зондов, поскольку не объясняет регулярный характер отклонения. Впрочем, к любым спекуляциям он относится достаточно снисходительно, во всяком случае, спокойнее Турышева. Ему важно расширить границы науки, узнать больше, чем сегодня. Но только не ценой безрассудства: он сознает опасность ученых, желающих во что бы то ни стало добиться признания своих сверхъестественных истин. «Если кто-то готов ввязаться в этакое, думая обрести нечто ценное, так он, помилуй Господи, просто вредитель!»
Ньето не сомневается, что в конце концов они найдут верное объяснение аномалии, обойдясь без великих потрясений основ. Такой перспективой он, как уверяет ученый, ничуть не обескуражен. Все равно мы получим не один новый метод анализа и научимся обрабатывать данные с изящной точностью. Изучим анатомию космических аппаратов и пространства — времени, в котором они движутся, так полно, как не сумели бы, не будь «Пионеров».
Ну а если Ньето не прав и все труды приведут к созданию новой физики — еще лучше! Для науки это в любом случае игра с ненулевой суммой, объясняет Ньето. Андерсон тоже считает, что проблема «Пионеров», скорее всего, ложная тревога. Однако и он не исключает научной революции, ибо видит в этой аномалии сходство с другой, которую невзначай разгадал Эйнштейн, создав совсем не с той целью общую теорию относительности.
В 1845 году французский астроном Урбен Жан Жозеф Леверье, известный как первооткрыватель Нептуна, изучал смещение перигелия Меркурия — ближайшей к Солнцу точки эллиптической орбиты планеты. Это явление, именуемое в астрономии прецессией, обусловлено гравитационным влиянием других тел Солнечной системы. Оно не уникально: то же происходит с любой планетой при каждом обороте вокруг Солнца. У Меркурия, однако, перигелий смещался с некоторым избытком. Когда Леверье вывел величину отклонения из закона Ньютона, та разошлась с результатами наблюдений на сорок три угловые секунды — немногим более сотой доли градуса — в столетие.
Заметить столь незначительное отклонение было для той эпохи настоящим подвигом — это все равно что предельно точно измерить диаметр однопенсовой монетки с дистанции в тридцать миль. Однако бурных восторгов не последовало: ученым предстояло найти причину неожиданной аномалии. Попробовали импровизировать. Сам Леверье решил — по всей вероятности, вдохновившись своим удачным предсказанием существования Нептуна, исходя из орбит других планет, — будто пути Меркурия свидетельствуют о наличии еще одного, пока не обнаруженного небесного тела. Другие предполагали неравномерное распределение солнечной массы или возмущение орбит, вызванное пылевыми облаками между Солнцем и Меркурием. Все было «мимо». Лишь в 1915 году Эйнштейн доказал, что столь массивные тела, как звезды, искривляют окружающее пространство, и тем самым объяснил отклонение ближайшей к Солнцу планеты.
С помощью одних лишь уравнений ОТО он рассчитал, что это искривление вкупе с гравитационными возмущениями других небесных тел дает для Меркурия прецессию перигелия в 42,9 угловых секунд за сто лет. Это послужило важным испытанием на прочность новаторской теории и привело к ее скорому триумфу. Джон Андерсон видит здесь урок и для тех, кто недооценивает потенциальную важность странного поведения «Пионеров».
Если аномалия имеет тривиальное объяснение, то Турышев со своей дотошностью докопается до него почти наверняка. Если же тут вмешалось нечто необычное — не поможет и самый тщательный отсев банальных вероятностей. История с прецессией Меркурия показала, что исключение тривиальностей само по себе еще не гарантирует успеха.
Хорошо, говорит Андерсон, пускай зонды дали недостаточно информации, чтобы выстроить целостную картину загадочных сил Вселенной, но даже если эта аномалия не приведет к прорыву в физике, она, во всяком случае, может пригодиться для проверки других теорий. Ведь Эйнштейн создавал ОТО не из-за проблем с перигелием, однако те сыграли важную роль в доказательстве правоты его радикальных идей. Если расчеты орбиты Меркурия облегчили одно из величайших научных озарений, то зонды «Пионер», вполне возможно, послужат той же цели.
Суждено ли совершиться внезапному прорыву? Пока мы располагаем данными, что состав Вселенной нам по большей части не известен; что многовековое учение, не исключено, потребует ревизии, а столкнуть с курса две космические станции — запущенные, кстати сказать, и для проверки законов Ньютона — могла неведомая сила. Томас Кун отнес бы все это к симптомам надвигающегося кризиса. Такое, конечно, неприятно отдает «скрипом небесных сфер», но, быть может, сулит изменить наше видение космоса в самом недалеком будущем.
Мысль захватывающая, однако никаких конкретных указаний на будущность науки она не дает. Все, что мы можем сделать, — это не оставлять усилий и складывать в копилку новые факты.
3. Постоянные склонны к переменам
Картина мира под вопросом
Помашите руками и убедитесь, не летите ли вы. Скорее всего, нет. Давление рук на воздух, направленное книзу, и противодействие в обратном направлении недостаточно сильны, чтобы вы преодолели земное притяжение. Необходимые физические величины диктуются законом всемирного тяготения Ньютона. (Независимо от его применимости на космологических расстояниях, здесь он работает превосходно.) Подъемная сила, нужная для полета, складывается из взаимодействия массы Земли, массы вашего тела, его расстояния от центра Земли и гравитационной постоянной, обозначаемой буквой G.
Уравнение Ньютона явилось результатом простого наблюдения: два тела притягивают друг друга, и G служит мерой силы этого притяжения. Любопытно, что данная константа не имеет теоретического объяснения. Ученые вывели ее экспериментальным путем, определив соотношение гравитации с другой известной силой — центробежной: той, что стремится сорвать Землю с орбиты. Но им не известно происхождение всемирного тяготения, а равно и то, почему его сила выражается именно этой величиной.
Читать дальшеИнтервал:
Закладка: