Майкл Брукс - Тринадцать вещей, в которых нет ни малейшего смысла

Тут можно читать онлайн Майкл Брукс - Тринадцать вещей, в которых нет ни малейшего смысла - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Ломоносовъ, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Майкл Брукс - Тринадцать вещей, в которых нет ни малейшего смысла краткое содержание

Тринадцать вещей, в которых нет ни малейшего смысла - описание и краткое содержание, автор Майкл Брукс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…

Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».

Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».


Тринадцать вещей, в которых нет ни малейшего смысла - читать онлайн бесплатно полную версию (весь текст целиком)

Тринадцать вещей, в которых нет ни малейшего смысла - читать книгу онлайн бесплатно, автор Майкл Брукс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Гравитационная постоянная — пожалуй, самая известная из фундаментальных констант физики, коллекции чисел, которые описывают, насколько велики силы природы. Хотя все константы выведены эмпирически, а не из глубинного постижения природы вещей, они — неотъемлемая часть того, что мы называем законами физики: при описании природных явлений фундаментальные постоянные как раз и служат «законодательством». А поскольку мы привыкли думать, что взлететь, помахивая руками, человеку будет завтра не проще, чем сегодня, — то есть считаем законы вечными и неизменными, — то резонно предположить, что константы также не меняются со временем. Потому австралийский физик Джон Вебб связался с этой проблемой, можно сказать, на свой страх и риск.

Законы и константы помогают людям описать и освоить мир природы. Но что, если они изменяются с течением времени? Как говорит сам Вебб с ироническим смешком: «Кто сказал постоянным, что они всегда должны быть постоянными?»

Сейчас Джон Вебб — профессор в университете Нового Южного Уэльса в Сиднее, а впервые он занялся этим вопросом еще в те годы, когда учился в аспирантуре в Англии. Его научный руководитель, математик и космолог Джон Барроу, предложил Веббу заново рассмотреть проблему, впервые поднятую в 1930-е годы британским физиком Полом Дираком: всегда ли неизменны физические законы?

Универсальная теоретическая конструкция, именуемая стандартной моделью физики, оперирует двадцатью шестью числами, которые фигурируют в уравнениях, составленных для того, чтобы описать величины различных сил природы. Эти равенства выведены в ходе экспериментов, проделанных на поверхности планеты Земля, притом по преимуществу в двадцатом веке. Но кто поручится, что аналогичные опыты дали бы те же самые результаты, если бы они были поставлены на Альфе Центавра или даже в нашей Солнечной системе, но десятью миллиардами лет раньше?

Если требуется проверить, оставался ли объект неизменным в течение очень долгого времени, нужен как можно более старый образец. Вебб и Барроу быстро разыскали такой эталон: свет, испущенный 12 миллиардов лет назад квазарами — ядрами самых далеких и активных галактик. Световое излучение звезд описывает константа, известная под официальным именем «постоянная тонкой структуры», но чаще обозначаемая как альфа. Зафиксированное в наши дни свечение квазара соответствует альфе, какой она была все эти миллиарды лет назад, что и дает самый верный шанс «закрыть» вопрос Дирака. В 1999 году ответ, кажется, был получен.

Фотоны, принесшие его Джону Веббу, преодолели 12 миллиардов световых лет космоса, пока не добрались до гавайской обсерватории Кека на вершине горы Мауна-Кеа. Но самый большой интерес, как выяснилось, представляет не свет, попавший в линзы телескопа, а тот, что потерялся в пути. Так же, как Весто Слайфер в обсерватории Лоуэлла восемьюдесятью годами ранее, Вебб со своей группой составлял хроматические спектрограммы. Но в его «радуге» на месте некоторых цветов зияли пустые промежутки. Само по себе это не столь примечательно: следует ожидать, что в своем бесконечно долгом путешествии свет встретит те или иные препятствия — как правило, газовые облака, — которые поглощают волны строго определенной длины. Этот эффект и придает спектру такой вид, будто посреди оранжевой стены в вашей спальне декоратор оставил пару вертикальных пробелов.

Главной неожиданностью для Вебба оказалось то, что разрывы были «не на своих местах». Любой атом, будь он в межзвездном газовом облаке или на подошве ботинка, поглощает свет на строго определенных резонансных частотах. Для каждого вида атомов эти частоты индивидуальны, как отпечатки пальцев у людей. Таким образом, проанализировав спектр поглощения — то есть выяснив, что в нем есть и чего не хватает, — легко понять, с какими химическими элементами столкнулись фотоны на своем пути.

«Дактилоскопия» в спектрограмме Вебба соответствовала двум типам поглощения: можно было с уверенностью сказать, что свет квазара прошел через газовые облака, насыщенные магнием и железом. Но здесь обнаружилась проблема. В точности соответствуя известным распределениям, пустые промежутки в спектрограмме в то же время были слегка смещены, словно кто-то смазал всю картину. Одни спектральные линии сползли немного влево, другие — столь же незначительно вправо.

Озадаченный Вебб перепроверил расчеты. Тут-то и выяснилось: искажения спектра сразу приобретают смысл, если ввести одну небольшую поправку. А именно допустить, что во времена, когда свет пробивался сквозь облака металлических атомов, величина альфы несколько отличалась от своего нынешнего значения.

Умозаключение вполне логичное, но выйти с ним на публику было не так-то просто. Вебб тут же подвергся атаке; как он деликатно выражается, «люди усомнились в его здравомыслии», услышав, что мировая физическая константа могла измениться за длительный срок. Тем более такая фундаментальная, как альфа.

Альфа описывает процесс, происходящий всякий раз, когда световое излучение встречается с той или иной элементарной частицей. Взгляните на стену перед собой. Каков бы ни был ее цвет, вы его видите благодаря альфе — силе электромагнитного взаимодействия. Фотон сталкивается с атомом краски. Тот поглощает его энергию и использует ее, чтобы послать фотон, который попадет на сетчатку вашего глаза. Энергия этого фотона определяет длину его волны, а тем самым — видимый цвет. Если стена воспринимается как оранжевая, значит, у отраженных от нее фотонов энергия одной величины; если цвет сиреневый — величина другая, несколько выше (при этом речь идет об эквивалентах энергии, содержащейся в миллиардной части миллиардной доли изюминки). Это чистая эмпирика, а можно вычислить цветовые характеристики определенного красителя теоретическим путем, обратившись к альфе и квантовой структуре элементарных частиц краски.

На первый взгляд альфа — всего лишь число. Значение его примерно равно 0,0 072 974, или 1/137, если вы предпочитаете простые дроби. Вывести эту величину достаточно просто (правда, смотря какими единицами измерения пользоваться). Возводим в квадрат заряд электрона, затем делим на число, известное как постоянная Планка. Эта фундаментальная константа квантовой физики, обозначаемая символом h, описывает отношение энергии фотона к длине его волны (цвету лучей). Полученное частное делим на скорость света и умножаем на 2 π . Результат и есть альфа.

Загвоздка в том, что альфа — не пособие по оформлению интерьеров, а теоретический фундамент всех наших знаний о мире, начиная… в общем, от нее самой и до омеги. Эта константа описывает, в частности, сколько энергии содержится в «пустоте» и как расширялась новорожденная Вселенная. В первые, условно говоря, три минуты после взрыва альфа включилась в игру, установив электромагнитные взаимодействия между новорожденными протонами; это определило, какие виды фотонов заполнят вакуум.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Майкл Брукс читать все книги автора по порядку

Майкл Брукс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Тринадцать вещей, в которых нет ни малейшего смысла отзывы


Отзывы читателей о книге Тринадцать вещей, в которых нет ни малейшего смысла, автор: Майкл Брукс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x