С. Капица - Жизнь науки
- Название:Жизнь науки
- Автор:
- Жанр:
- Издательство:Наука
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
С. Капица - Жизнь науки краткое содержание
Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.
Жизнь науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Этот парадокс перестает казаться парадоксом для тех, кто изучал эти науки как философ: для них наибольшей ясностью обладают именно те наиболее абстрактные понятия, которые обычно считаются наиболее недоступными. Наоборот, нашими мыслями овладевает мрак по мере того, как мы сталкиваемся в том или ином объекте с чувственными свойствами. Так, прибавляя к понятию протяженности непроницаемость, мы, мне кажется, лишь увеличиваем тайну; природа движения является загадкой для философов; не менее скрыто от них и метафизическое начало законов соударения. Одним словом, чем более углубляют они образующееся у них понятие о материи и о свойствах, ее представляющих, тем более это понятие затемняется, как будто стремясь ускользнуть от них, и тем более они убеждаются, что о внешних объектах наименее несовершенным образом мы знаем лишь одно,— это их существование, да и оно опирается на сомнительное свидетельство наших чувств.
Из этих соображений следует, что наилучший метод в любом отделе математики (можно даже сказать: в любой науке) состоит в том, чтобы не только вводить туда и максимально применять знания, полученные из более абстрактных, а следовательно, и более простых наук, но и самый объект данной науки рассматривать наиболее абстрактным и наиболее простым из всех возможных способов, ничего не предполагать и ничего не приписывать объекту данной науки, кроме тех свойств, из которых, как из предпосылки, исходит сама данная наука. Отсюда вытекают два преимущества: во-первых, принципы получают всю возможную для них ясность; во-вторых, эти принципы оказываются сведенными к наименьшему числу, выигрывая тем самым в своей общности, так как, поскольку предмет науки необходимо определен, принципы этой науки тем плодотворнее, чем меньше их число.
С давних пор намеревались, причем не без успеха, выполнить по отношению к математике некоторую часть того плана, который нами только что намечен: алгебру удачно применяли к геометрии, геометрию к механике и каждую из этих трех наук ко всем остальным наукам, основанием и фундаментом которых они являются. Однако при этом не заботились ни о сведении принципов этих наук к наименьшему числу, ни о том, чтобы придать этим принципам всю ту ясность, которой можно было бы желать. Особенно пренебрегали этой задачей, мне кажется, в механике: большинство ее принципов либо неясных самих по себе, либо неясно сформулированных и доказанных, давали повод к ряду трудных вопросов. Вообще, до сих пор занимались больше увеличением здания, чем освещением входа в него. Думали, главным образом, над тем, как бы возвысить его, не заботясь о том, чтобы придать необходимую прочность его основанию.
В настоящем сочинении я поставил себе двоякую цель: расширить рамки механики и сделать подход к этой науке гладким и ровным. При этом я больше всего заботился о том, чтобы одна задача решалась с помощью другой, т.е. я стремился не только вывести принципы механики из наиболее ясных понятий, но и расширить область их применений. Наряду с этим я стремился показать как бесполезность многих принципов, употреблявшихся до сих пор в механике, так и выгоды, которые-можно получить для прогресса этой науки от объединения остальных. Одним словом, я стремился расширить область применения принципов, сокращая в то же время их число.
Таковы были мои намерения в настоящем сочинении. Для того чтобы ознакомить читателя со средствами, при помощи которых я старался осуществить эти намерения, может будет не лишним заняться логическим» анализом науки, которую я взялся излагать...
ЛАГРАНЖ

Жозеф Луи Лагранж родился в Турине. Его мать была итальянкой. Отец, французский дворянин, был военным казначеем; некогда состоятельный, он разорился из-за бесчисленных финансовых спекуляций, что, впрочем, мало волновало сына. Позднее Жозеф писал: «Если я был бы богат, я, вероятно, не достиг бы моего положения в математике; и в какой другой области я добился бы тех же успехов?»
Семнадцати лет Лагранж увлекся математикой, прочитав мемуар астронома Галлея «О преимуществах аналитического метода». Уже тогда геометрия классических авторов его мало привлекала и впоследствии в «Аналитической механике» он заметит, что в этой книге нет ни одного чертежа. В 17 лет Лагранж стал преподавателем Артиллерийской школы в Турине. Там же он организует научное общество, впоследствии выросшее в известную Туринскую Академию наук. В трудах общества Лагранж публикует свои ранние работы по изопериметрическим кривым и вариационному исчислению, вызвавшие восторженные отзывы Эйлера. По рекомендации Эйлера Лагранж был выбран иностранным членом Берлинской Академии и в 1766 г. переезжает в Берлин.
Последующие 20 лет были годами интенсивного творчества, завершившегося созданием «Аналитической механики». Однако в 1786 г. покровительствующий Лагранжу Фридрих II умер, время «просвещенного абсолютизма» кончилось. Тогда Лагранж по приглашению Людовика XVI переехал в Париж. В 1788 г. ему, наконец, удалось и:дать свою великую книгу. Ее написание настолько опустошило Лагранжа, что он впал в состояние глубокой депрессии.
Во время Великой Французской революции жизнь Лагранжа как иностранца была в опасности; однако от ареста его спас Лавуазье. Вскоре Лагранж был назначен членом Комиссии по изобретениям и ремеслам, а затем председателем Комиссии по установлению метрической системы мер и весов. Лагранж активно содействовал созданию новой системы и внедрению ее революционных принципов в жизнь.
В период Империи Наполеон сделал Лагранжа князем. Лагранж принимал деятельное участие в организации высших учебных заведений нового типа — Эколь Нормаль (Нормальной школы), а затем Политехнической школы. Он преподавал математику и написал три книги по анализу. Его попытка обоснования исчисления бесконечно малых была неудачной, но эти работы инициировали исследования Коши.
Лагранж был мягким и деликатным человеком. Крайне мнительный, он сильно заботился о своем здоровье, и лечащие врачи 29 раз подвергали его кровопусканию. Он не пил вина и был вегетарианцем. В последние годы жизни он отошел от математики и механики, оставил занятия химией и обратился к ботанике, языкознанию, философии.
Сочинения Лагранжа, совершенные по форме и исключительные ко глубине и широте охвата проблем современной ему математики, астрономии и механики, составляют 14 томов. Ниже следует предисловие к первому изданию «Аналитической механики», а также краткие введения, которыми автор предваряет основные части этого сочинения: «Статику» и «Динамику».
Читать дальшеИнтервал:
Закладка: