С. Капица - Жизнь науки
- Название:Жизнь науки
- Автор:
- Жанр:
- Издательство:Наука
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
С. Капица - Жизнь науки краткое содержание
Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.
Жизнь науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
С этой точки зрения, это — язык, необходимый инженеру, создающему какой-либо проект, а также всем тем, кто должен руководить его осуществлением, и, наконец, мастерам, которые должны сами изготовлять различные части.
Вторая цель начертательной геометрии — выводить из точного описания тел все, что неизбежно следует из их формы и взаимного расположения. В этом смысле это — средство искать истину; она дает бесконечные примеры перехода от известного к неизвестному; и поскольку она всегда имеет дело с предметами, которым присуща наибольшая ясность, необходимо ввести ее в план народного образования. Она пригодна не только для того, чтобы развивать интеллектуальные способности великого народа и, тем самым, способствовать усовершенствованию рода человеческого, но она необходима для всех рабочих, цель которых придавать телам определенные формы; и именно, главным образом, потому, что методы этого искусства до сих пор были мало распространены пли даже совсем не пользовались вниманием, развитие промышленности шло так медленно.
Народному образованию будет дано полезное направление, если наши молодые специалисты привыкнут применять начертательную геометрию к графическим построениям, необходимым во многих областях, и пользоваться ею для построения и определения элементов машин, при помощи которых человек, используя силы природы, оставляет за собой только работу разума.
Не менее полезно распространять знания о явлениях природы, которые тоже можно заставить служить на пользу дела.
Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума,— что большинству людей представляется утомительным и скучным занятием.
Итак, в Нормальной школе должен быть курс начертательной геометрии.
Но так как мы не имеем до сих пор в этой области науки ни одного хорошо написанного элементарного труда,— потому ли, что наши ученые слишком мало ею интересовались, или потому, что она применялась туманным образом лицами недостаточно образованными, не умевшими излагать результаты своих размышлений,— простои устный курс был бы абсолютно бесцельным.
Лекционное изложение методов начертательной геометрии необходимо сопровождать практическими занятиями.
Поэтому ученики должны упражняться в графических построениях по начертательной геометрии. В графических искусствах применяются общие методы, с которыми можно освоиться, пользуясь только циркулем и линейкой.
Среди различных возможных применений начертательной геометрии имеются два замечательных как по своим обобщениям, так и по своей изобретательности: это построение перспективы и точное определение теней на рисунке. Эти два вопроса могут быть рассмотрены как дополнение к искусству описания предметов.
ЛАПЛАС

Пьер Симон Лаплас родился на севере Франции в Нормандии, в бедной крестьянской семье. Благодаря помощи состоятельных соседей, обративших внимание на способности молодого Лапласа, ему удалось окончить школу Ордена Бенедиктинцев в Кане. Затем он стал преподавателем в военной школе в родном городе Бомон. Когда Лапласу было 18 лет, он отправился в Париж с письмом к Д’Аламберу; но только представив ему работу по основам механики, Лапласу удалось обратить на себя внимание и получить место преподавателя в военной школе в Париже. С тех пор Лаплас не покидал этого города, пережив Великую Французскую революцию, эпоху Наполеона и реставрацию Бурбонов.
Лаплас был членом Комиссии мер и весов, разработавшей метрическую систему, и членом Бюро долгот. Он был профессором Нормальной школы с самого ее основания. При Директории Лаплас добивался и получил пост министра внутренних дел. Однако вскоре он был уволен, так как, по словам Консула: «...он вносил слишком много бесконечно малых в дела государства». Министром стал брат Наполеона, а Лапласа в утешение сделали членом вновь образованного Сената.
Во время Империи он стал офицером Почетного легиона и графом, но это не помешало ему в 1814 г. голосовать за низложение Наполеона. После Реставрации Лаплас стал пэром и получил титул маркиза. В 1816 г. Лапласа избрали членом Французской Академии, «бессмертным», главным образом за блестящие литературные достоинства его небольшой книги «Изложение системы мира» (1796), содержащей в виде приложения знаменитую космогоническую гипотезу, обычно называемую небулярной гипотезой Канта — Лапласа,
По свидетельству современников, Лаплас был малоприятным и политически беспринципным человеком. Он голосовал за исключение Монжа из Академии, не выносил деликатного и веротерпимого Лагранжа и хорошо относился только к Д’Аламберу. Несмотря на религиозное воспитание, Лаплас был убежденным атеистом. Когда Наполеон спросил его, есть ли у него место в «Небесной механике» для Бога, ученый ответил: «Ваше Величество, я не нуждаюсь в этой гипотезе...»
Мы приводим предисловия к «Изложению системы мира», а также к первому (1799) и к третьему (1805) томам «Небесной механики».
С именем Лапласа связан тот детерминизм, который был столь характерной чертой естественнонаучных представлений его эпохи. Тем не менее Лапласу принадлежит и знаменитое сочинение по теории вероятностей; мы заключаем этот раздел предисловием к его «Аналитической теории вероятностей» (1812).
Предисловие
Из всех естественных наук астрономия представлена нам самым длинным сцеплением открытий. Чрезвычайно далеко от первого взгляда на небо до общего воззрения, которым теперь обнимают прошедшее и будущее состояние мира. Чтобы прийти к этим воззрениям, нужно наблюдать светила в течение многих веков; понять, как по их кажущимся движениям узнать истинное движение Земли, как перейти от законов планетных движений к началу всемирного тяготения и, наконец, от этого начала к полному объяснению всех небесных явлений в их малейших подробностях. Ум человеческий совершил это дело в астрономии.
Изложение последовательности этих открытий и простейшего способа их происхождения представляет двойную выгоду — познание большого количества занимательных фактов и истинные методы исследования законов природы. Этому предмету посвящено сочинение, лежащее перед читателем.
Предисловие к I тому
В конце прошлого века Ньютон опубликовал свое открытие всемирного тяготения. С тех пор математикам удалось все известные явления мироздания свести к этому великому закону природы, и таким образом достичь в астрономических теориях и таблицах неожиданной точности. Моя цель состоит в том, чтобы представить с единой точки зрения теории, рассеянные по разным работам, соединив вместе все результаты по равновесию и движению твердых и жидких тел, из которых построена наша Солнечная система и подобные системы, раскинутые в просторах Вселенной, и построить таким путем небесную механику.
Читать дальшеИнтервал:
Закладка: