Абрам Фет - Катастрофы в природе и обществе
- Название:Катастрофы в природе и обществе
- Автор:
- Жанр:
- Издательство:Сибирский хронограф
- Год:неизвестен
- ISBN:5-87550-091-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Абрам Фет - Катастрофы в природе и обществе краткое содержание
Катастрофы в природе и обществе - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Парниковый эффект
Техническая деятельность человека, и прежде всего энергетика, основанная на сжигании углеродных топлив, изменяет состав земной атмосферы. Это изменение неизбежно приводит к изменению климата, которое уже наблюдается и может быть предсказано на будущее, если наша техника будет лишь количественно умножаться, оставаясь на нынешнем уровне развития.
Атмосфера представляет в своем естественном виде смесь газов, почти неизменную по составу, если не считать водяного пара, составляющего, в зависимости от температуры, от 0 до 4% объема воздуха. Сухой воздух содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,036% углекислого газа и очень небольшие количества других инертных газов, водорода, озона, метана и окиси азота.
Энергетический баланс Земли . Полная энергия солнечного излучения хорошо известна. Известно также, какая часть ее задерживается земной атмосферой, рассеивающей это излучение: лишь около половины его достигает поверхности Земли. Мощность излучения, падающего на эту поверхность, точно измерена. В среднем на одного жителя Земли в наше время приходится около 50000 киловатт солнечной энергии. Для сравнения заметим, что мощность всей нашей промышленности составляет меньше одного киловатта на человека, так что опасность прямого перегрева от технической деятельности нереальна. Можно было бы подумать, что эта деятельность слишком мала по сравнению с космическими процессами, чтобы внушать серьезные опасения. Как мы увидим дальше, для таких опасений есть причины.
Земля (без атмосферы) получает излучение в широком диапазоне частот. Частота излучения ν обратно пропорциональна его длине волны λ , так что λν=c, где c – скорость света. Лучи самых высоких частот или, что то же, самые коротковолновые – это гамма-лучи, рентгеновские и ультрафиолетовые лучи. Они составляют небольшую часть солнечного излучения и в основном задерживаются верхними слоями атмосферы, в особенности слоем озона – к счастью для нас, потому что эти лучи опасны для жизни. Около половины солнечной энергии, достигающей поверхности Земли, относится к "видимому свету", то есть воспринимается нашим зрением; наибольшая интенсивность этого излучения приходится на волны длиной около 0,5 микрона, соответствующие желтому цвету (поэтому Солнце считается у астрономов "желтой звездой").
Другая половина поступающего на Землю излучения – это невидимые длинноволновые лучи, так называемое инфракрасное или тепловое излучение. Мы можем ощутить такое излучение, приблизив руку к радиатору водяного отопления.
Земля, в свою очередь, излучает в космос, но только инфракрасные лучи, длиной от 3 до 30 микронов. Видимого света Земля не излучает: она "не светится". Поскольку температура Земли (на ее излучающей поверхности) меняется очень медленно, то, по законам термодинамики, Земля должна находиться в "термодинамическом равновесии" с окружающей средой, то есть излучает столько же энергии, сколько поглощает. Так как величина падающего на Землю излучения известна, то известно и ее собственное излучение, которое мы обозначим через W.
Энергия, излучаемая телом, конечно, зависит от его температуры. Например, горячая металлическая крышка плиты излучает тем больше, чем сильнее она нагрета. Оказывается, существует важный класс тел, излучение которых вполне определенным образцом зависит от их температуры: это так называемые "абсолютно черные тела". Абсолютно черным называется тело, поглощающее все падающее на него излучение. Термин этот объясняется тем, что тела, окрашенные в черный цвет, поглощают большую часть падающего излучения. Зеркала, напротив, почти не поглощают излучения, а отражают его. Звезды и планеты, как доказано в астрофизике, с большой точностью можно считать абсолютно черными телами. Конечно, они светятся "отраженным светом", вследствие чего Луну и Землю можно видеть из космоса, но доля отраженного излучения очень мала. Для вычисления баланса энергии Землю можно считать, с большой точностью, абсолютно черным телом. Как уже было сказано, при постоянной температуре Земля излучает столько же энергии, сколько поглощает – хотя и в другом спектре излучения, только инфракрасном.
Оказывается, для любого абсолютно черного тела полная мощность его излучения W определяется температурой T его излучающей поверхности. Температура T измеряется в термодинамике по шкале Кельвина, в которой величина градуса та же, что в шкале Цельсия, но началом отсчета служит "абсолютный нуль" – наименьшая возможная в природе температура, равная -273° Цельсия. Тогда при абсолютном нуле температура Кельвина T = 0, в точке таяния льда T = 274°, в точке кипения воды T = 373°. Средняя температура земной поверхности составляет в наше время около +20°, то есть, по Кельвину, T = 300°. Для любого абсолютно черного тела полная мощность его излучения W связана с температурой его излучающей поверхности T законом Стефана – Больцмана:
W = CT 4,
где C – "мировая постоянная", одна и та же для всех таких тел, значение которой нас здесь не интересует.
Этот закон, установленный опытами Стефана, был затем выведен Больцманом из основных принципов термодинамики и является одним из самых важных законов природы. Он постоянно применяется в астрофизике, и нет никаких сомнений в его применимости к Земле. (Напомним, что имеется в виду Земля без атмосферы, а не бо'льшая система, состоящая из Земли вместе с ее атмосферой). Поясним на примере, какие выводы следуют из закона Стефана – Больцмана в применении к Земле. Предположим, что Земля перешла в другое состояние, с температурой поверхности T' = T + ΔT; спрашивается, как изменится мощность ее излучения W? Или, обратно, пусть известно, насколько изменилось излучение W ; спрашивается, как изменится температура? На эти вопросы можно дать однозначный и совершенно бесспорный ответ. При температуре T' излучаемая мощность W' равна
W' = CT' 4,
с тем же универсальным множителем C. Деля это соотношение на предыдущее, получаем
или, полагая T' = T + ΔT, W' = W + ΔW,
Если изменение температуры ?T мало по сравнению с T, то можно, вычислив степень справа, отбросить высшие степени малой величины ΔT/T ; тогда имеем
или
Пусть теперь известно, что излучение Земли – по любым причинам – изменилось на 1%, то есть ΔW/W = 0,01. Насколько изменится температура земной поверхности T?. Из предыдущей формулы =0,0025, и полагая T = 300°, имеем ΔT = 0,75°, так что температура Земли изменится примерно на один градус.
Парниковые газы . Инфракрасное излучение Земли уходит в космос через атмосферу. Молекулы газов, составляющих атмосферу, могут рассеивать это излучение, в конечном счете возвращая часть его обратно на Землю. Примечательным образом, главные составляющие земной атмосферы – двухатомные молекулы азота N 2, кислорода O 2и одноатомные молекулы аргона Ar – не ответственны за этот процесс. Это весьма малые молекулы, по сравнению с длиной волны инфракрасного излучения, а столь малые молекулы почти не задерживают длинноволнового излучения. Если бы атмосфера состояла только из этих главных газов, то она свободно пропускала бы излучение Земли. Препятствие для этого излучения составляют большие молекулы таких газов, как углекислый газ CO 2, метан CH 4и некоторые другие, о которых еще будет речь. Несмотря на небольшое содержание этих газов в атмосфере, они перехватывают (вместе с облаками) почти 90% длинноволнового излучения Земли и отсылают обратно на Землю значительную его часть. В конечном счете, после повторного отражения газовыми молекулами, большая часть излучения Земли прорывается в космос. Но все же определенная часть его задерживается "парниковыми газами", и поскольку оптические свойства всех газов известны, то можно вычислить, какую часть излучения не выпускают в космос эти газы.
Читать дальшеИнтервал:
Закладка: