Виорель Ломов - 100 великих научных достижений России
- Название:100 великих научных достижений России
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виорель Ломов - 100 великих научных достижений России краткое содержание
Давно признаны во всем мире достижения российской науки. Химия, физика, биология, геология, география, астрономия, математика, медицина, космонавтика, механика, машиностроение… – не перечислить всех отраслей знания, где первенствуют имена российских ученых.
Что такое математический анализ Л. Эйлера? Каковы заслуги Н.И. Лобачевского в геометрии? Какова теория вероятности А.Н. Колмогорова? Как создавал синтетический каучук С.В. Лебедев? Какое почвоведение разработано В.В. Докучаевым? Какую лунную трассу создал Ю.В. Кондратюк? Над какими атомными проектами работал А.П. Александров? На эти и другие вопросы отвечает очередная книга серии «100 великих».
100 великих научных достижений России - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
12 декабря 1876 г. впервые вспыхнул свет «свечи Яблочкова» (французский патент № 112024, 1876). К этому дню ученый шел несколько лет.
Будучи членом кружка электриков-изобретателей и любителей электротехники при Московском политехническом музее, Яблочков узнал об опытах Лодыгина по освещению улиц и помещений лампами накаливания и загорелся идеей найти дуговой лампе Фуко с ручным регулированием длины дуги новую область практического применения. Дуговые лампы от электрических отличаются тем, что в них под действием электрического разряда светится газ между электродами, а в лампах накаливания свет излучает нагретая нить.
Установив впервые в истории железнодорожного транспорта на паровозе прожектор с такой дуговой лампой, Яблочков был разочарован хотя и эффектным освещением пути следования, но чрезвычайно неэффективным ручным регулированием и решил усовершенствовать лампу Фуко, имевшую горизонтальное расположение угольных электродов.
Как-то занимаясь опытами по электролизу растворов поваренной соли, Яблочков обратил внимание на вспышку между двумя случайно коснувшимися друг друга угольными пластинками-электродами, после чего остановился на варианте дуговой лампы без регулятора межэлектродного расстояния.
Поставив электроды вертикально, изобретатель разделил их слоем изолятора – фарфоровой вставкой, а зажигание производил сведением электродов до соприкосновения (с последующим разведением). Во время работы лампы электроды сгорали и испарялись, но нужное расстояние между ними поддерживалось автоматически.
Это простейшее (но и гениальное) устройство, в котором ученый добился главного – саморегулирования свечения, тут же получило название «свеча Яблочкова». Местом первой демонстрации нового источника света стал Лондон. В столицах Европы, Америки, Азии «русский свет» осветил универсальные магазины и театры, площади и улицы, а во дворцах персидского шаха и короля Камбоджи не могли нарадоваться яркости голубого и оранжевого (в зависимости от состава вещества в прокладке между углями) «северного света». В России впервые электрическое освещение по системе Яблочкова было проведено в 1878 г. в казармах Кронштадта и в Большом театре Петербурга.
Пресса изливала восторг и вещала о новой эре в развитии электротехники. Во Французской академии и в других крупнейших научных обществах Европы изобретению русского ученого был посвящен ряд докладов. На электротехнической выставке 1881 г. в Париже изобретения Яблочкова, признанные вне конкурса, получили высшую награду. Словом, мир получил свет, а Яблочков – мировое признание.
Надо отметить, что Яблочков не только изобрел свечу, но и обеспечил ей скорейшее внедрение. Оснастил осветительные установки генераторами переменного тока; рассчитал и предложил цепи из произвольного числа свечей; добился увеличения их долговечности (из-за быстрого сгорания электродов первых свеч хватало на 1,5 часа); разработал системы распределения тока при посредстве индукционных приборов – предшественников современных трансформаторов.
Товарищество «Яблочков-изобретатель и К°» какое-то время процветало, но поскольку Павлу Николаевичу за непрестанными расчетами и опытами некогда было самому заниматься делами фирмы, ими занимались проходимцы, которые оставили изобретателя ни с чем.
Через несколько лет яркие, но неэкономичные дуговые лампы заменились лампами накаливания, но не ушли, а заняли свою достойную нишу среди прочих источников света.
Позднее вольтову дугу стали заключать в лишенную кислорода атмосферу, чем повысили непрерывность горения до 200 часов. Сейчас вместо вакуума применяют инертные газы. Широкое применение нашли источники особо яркого (белого) света – ртутные и ксеноновые дуговые газоразрядные лампы. Для получения желтого и оранжевого цветов применяют натриевые лампы соответственно низкого и высокого давления, пользующиеся славой самых эффективных источников света.
Собственно же дуговая угольная лампа Яблочкова в ее первозданном виде получила широчайшее распространение в XX в. в прожекторостроении, кинопроекционной аппаратуре, в мощных облучательных установках, находящих большое применение. Так, например, в оптических печах исследуют физико-химические свойства материалов при высоких температурах, изучают влияние интенсивных лучистых потоков на материалы и организмы, осуществляют плавку в особо чистых условиях, сварку и пайку тугоплавких материалов, выращивают монокристаллы, занимаются рафинированием цветных металлов и т. д.
Свеча Яблочкова повлияла на многие работы в области электрического освещения, в частности инициировала возникновение научной фотометрии.
«Свеча Яблочкова дала электротехнике такой же сильный толчок на пути разнообразнейших практических применений электричества, какой паровая машина Уатта дала применениям пара в промышленности» (академик Н.П. Петров).
Помимо своего главного изобретения Павел Николаевич предложил еще электрическую лампочку другого типа – каолиновую, свечение которой происходило от огнеупорных тел, накаляемых электрическим током. Этот принцип спустя четверть века был использован в лампе Нернста.
Ученый создал еще несколько электрических машин и химических источников тока, принесших славу России в области электротехники; получил ряд патентов на магнитоэлектрическую машину переменного тока без вращательного движения; на магнитодинамоэлектрическую машину, на машину переменного тока с вращающимся индуктором, полюсы которого были расположены на винтовой линии; на электродвигатель-генератор, могущий работать на переменном и на постоянном токе, и т. д. В Санкт-Петербурге Яблочков основал электромеханический завод, учредил первый русский электротехнический журнал «Электричество» (1880).
Т.А. Эдисон прожил свою жизнь в богатстве, в свете славы и «ламп Эдисона», а П.Н. Яблочков умер в бедности, редко вспоминаемый кем, 31 марта 1894 г. в Саратове, улицы которого освещали тогда в лучшем случае газовыми английскими фонарями, хотя в концертном зале на Немецкой улице и в гостинице «Россия» уже горели электрические фонари по 550 свечей каждый.
ЛАМПА НАКАЛИВАНИЯ ЛОДЫГИНА
Физик, электротехник, инженер, конструктор, изобретатель; народник; заводской слесарь, молотобоец, сотрудник строительного управления Петербургской железной дороги, заведующий подстанциями городского трамвая в Петербурге, преподаватель Петербургского электротехнического института; основатель первых ламповых производств во Франции и заводов по электрохимическому получению вольфрама, хрома, титана в США; создатель компании «Русское товарищество электрического освещения Лодыгин и К°»; действительный член Русского технического общества; участник многих международных выставок; лауреат Ломоносовской премии Петербургской АН; кавалер ордена Станислава 3-й степени; почетный инженер-электрик Электротехнического института императора Александра III (ЭТИ), Александр Николаевич Лодыгин (1847–1923) изобрел лампу накаливания. Лодыгин известен также как основатель промышленной электротермии, разработчик электрических печей сопротивления и индукционных для плавки металлов, меленита, стекла, закалки и отжига стальных изделий, получения фосфора, кремния.
Читать дальшеИнтервал:
Закладка: