Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сами по себе статьи были не менее поразительны — всего шестьдесят восемь страниц текста, — что привело к тому, что другим ученым пришлось потратить немало времени на то, чтобы понять их содержание и извлечь из них ключевые аргументы, кратко набросанные Перельманом. На сегодняшний день является общепризнанным, что программа исследований, начатая Гамильтоном и продолженная Перельманом, в конце концов привела к разрешению как давней гипотезы Пуанкаре, так и более свежей проблемы Тёрстона.
Если это единодушное признание действительно имеет под собой основу, то совместные успехи Гамильтона и Перельмана представляют собой важнейшее достижение геометрического анализа. Согласно моим расчетам, почти половина теорем, лемм и прочих вспомогательных утверждений, полученных в этой области на протяжении последних тридцати лет, были использованы в работах Гамильтона и Перельмана, что и привело в конце концов к доказательству гипотезы Пуанкаре.
Итак, вы увидели некоторые из тех гвоздей, которые по самые шляпки загнал в дерево молоток геометрического анализа. Однако вы, наверное, помните, что я обещал описать три важнейших достижения геометрического анализа. Успехи в области четырехмерной топологии и доказательство гипотезы Пуанкаре вместе с методами потока Риччи, понадобившимися для ее доказательства, представляют собой только два из них. Остается еще и третье достижение — то, в котором я принял непосредственное участие и о котором пойдет речь далее.
Четвертая глава
Слишком хорошо, чтобы быть правдой
Третье важнейшее достижение, полученное при помощи нашего нового «молотка» — геометрического анализа, — относится к гипотезе, выдвинутой в 1953 году Эудженио Калаби, математиком, с 1964 года работающим в Пенсильванском университете. Эта гипотеза, как будет показано далее, стала ключевой в обсуждаемой области и оказала огромнейшее влияние на всю мою дальнейшую научную карьеру. Я считаю своей особенной удачей то, что мне довелось наткнуться на идеи Калаби, точнее, налететь на них лбом — тогда еще не было принято носить шлемы. Конечно, каждый математик, достаточно талантливый и подготовленный, с большой вероятностью внесет определенный вклад в исследуемую им область, однако чтобы найти задачу, специально предназначенную для твоего таланта и образа мыслей, необходимо иметь еще и особое везение. В математике мне везло не один раз, но столкновение с гипотезой Калаби в этом отношении для меня является удачей из удач.
Задача имеет форму теоремы, связывающей топологию комплексных пространств , о которых мы поговорим далее, с их геометрией, или кривизной. Основная идея состоит в следующем. Возьмем некое необработанное топологическое пространство, представляющее собой что-то вроде пустого участка земли, специально расчищенного для предстоящего строительства. Соорудим на нем некую геометрическую структуру, которую впоследствии можно еще и декорировать различными способами. Вопрос, который задал Калаби, хотя и содержит некоторые оригинальные идеи, тем не менее принадлежит к тому типу вопросов, которые очень часто ставятся геометрами, а именно: какие из строго определенных геометрических структур допустимы для заданной топологии или, грубо говоря, для заданной формы объекта?

Рис. 4.1.Геометр Эудженио Калаби (фотография Дирка Феруса)
Ответ на этот вопрос едва ли покажется кому-либо имеющим важное значение для физики. Но посмотрим на него с другой стороны. Гипотеза Калаби касается пространств, имеющих особый тип кривизны, известный как кривизна Риччи, которая вкратце будет описана позже. Как оказалось, кривизна Риччи определенного пространства напрямую зависит от распределения материи в этом пространстве. Пространство, называемое риччи-плоским — кривизна Риччи которого равна нулю, — представляет собой пространство, материя в котором отсутствует. Рассматривая поставленный Калаби вопрос с этой точки зрения, можно увидеть его непосредственную взаимосвязь с общей теорией относительности Эйнштейна: возможно ли существование гравитации во Вселенной, представляющей собой полностью лишенный материи вакуум? Если Калаби прав, то кривизна делает возможной гравитацию даже при отсутствии материи. Калаби сформулировал эту задачу в еще более общей форме, поскольку его гипотеза относилась к пространствам любой возможной размерности, а не только к четырехмерным, лежащим в основе общей теории относительности. Такая формулировка казалась мне наиболее правильной, так как она полностью согласовывалась с моим убеждением о том, что самые глубокие математические идеи в случае их истинности всегда находят применение в физике и должны проявлять себя в природе вообще.
Калаби утверждает, что, когда эта гипотеза впервые пришла ему в голову, «она совершенно не была связана с физическими представлениями. Это была чистая геометрия» [42] Eugenio Calabi (University of Pennsylvania), interview with author, October 18, 2007.
. Я не сомневаюсь в истинности его слов. Это утверждение могло бы быть точно так же сформулировано, даже если бы Эйнштейну никогда не приходила в голову идея общей теории относительности. И доказательство этой гипотезы могло бы быть получено, даже если бы теории Эйнштейна не существовало. Впрочем, я уверен, что в то время, когда Калаби сформулировал свою задачу — почти через сорок лет после публикации Эйнштейном его революционных статей, — теория Эйнштейна была уже широко распространена. Едва ли найдется хотя бы один математик, который никогда не размышлял над физическими идеями Эйнштейна, пусть даже без какой-либо определенной цели. К тому времени уравнения Эйнштейна прочно связали искривление пространства и гравитацию, глубоко пустив корни в математику. Можно сказать, что общая теория относительности стала частью коллективного сознания или, наоборот, «коллективного бессознательного», — как сказал бы Юнг.
Безотносительно к тому, сознательно или бессознательно Калаби затрагивал физические проблемы, связь между его гипотезой и вопросами гравитации стала для меня важнейшим побудительным фактором, чтобы приняться за эту работу. Я понял, что доказательство гипотезы Калаби может стать важным шагом на пути к раскрытию какой-то глубокой тайны.
Вопросы, подобные тому, который поставил Калаби, часто формулируют в терминах метрики или геометрии пространства — набора функций, который позволяет определить длину любой траектории в соответствующем пространстве, — с этим понятием мы впервые столкнулись в первой главе. Всякое топологическое пространство способно принимать множество различных форм и, следовательно, обладать множеством всевозможных метрик. Одно и то же топологическое пространство может иметь форму куба, сферы, пирамиды или тетраэдра — геометрических тел, эквивалентных с топологической точки зрения. Вопрос, который затрагивает гипотеза Калаби, относящийся к разновидностям метрики, допустимым в данном пространстве, может быть переформулирован следующим эквивалентным образом: какие из геометрических форм возможны для пространств данной топологии?
Читать дальшеИнтервал:
Закладка: