Айзек Азимов - Земля и космос. От реальности к гипотезе
- Название:Земля и космос. От реальности к гипотезе
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2004
- Город:Москва
- ISBN:5-9524-0899-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Земля и космос. От реальности к гипотезе краткое содержание
Как появилась астрология и есть ли в ней рациональное зерно? Что такое «редкие земли»? Сколько времени будет продолжаться современный рост населения Земли и как можно решить демографическую проблему? Вы сможете получить ответы на эти и многие другие вопросы из области астрономии, физики, химии и социологии, прочитав эту познавательную и увлекательную книгу.
Земля и космос. От реальности к гипотезе - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, вес частично зависит от свойств самого объекта — но он также зависит и от интенсивности гравитационного поля, на которое реагирует этот объект. Если мы будем стоять на поверхности Луны и держать объект в руках, то он будет «пытаться» ответить на гравитационное поле, которое составляет только одну шестую интенсивности на поверхности Земли. Таким образом, и вес может составлять только одну шестую.
Каким является неотъемлемое свойство материи, от которого, в частности, зависит вес? Это масса (см. главу 5). Этот термин и эту концепцию ввел Ньютон.
Производимая телом сила, «пытающаяся» ответить на гравитационное поле, пропорциональна этой массе, так же как и величине гравитационного поля. Но на поверхности Земли гравитационное поле неизменно, так что мы можем сказать, что производимая телом сила, «пытающаяся» ответить на гравитационное поле Земли, при обычных обстоятельствах пропорциональна только массе этого тела.
(На самом же деле гравитационное поле Земли изменяется от участка к участку, в зависимости от расстояния от этой точки до центра Земли и от распределения материи вокруг этой точки. Эти различия трудно определить, измеряя вес рукой, но точные измерения все же позволяют это сделать.)
Поскольку вес при обычных обстоятельствах пропорционален массе (и наоборот), трудно бороться с искушением рассматривать их как нечто идентичное. Когда понятие массы только было установлено, ей дали единицы измерения (к примеру, фунты), которые до того использовались для измерения веса. И по сей день мы говорим «масса два килограмма» и «вес два килограмма» — а это неправильно. Такие единицы, как килограммы, следует применять только к массе, а весу следует дать единицы силы — но попробуйте говорить об этом с каменной стеной.
Единицы были выбраны с учетом того, чтобы на поверхности Земли масса шесть килограммов имела и вес шесть килограммов, — но на лунной поверхности то же самое тело будет по-прежнему иметь массу шесть килограммов, а вес — только один килограмм.
Спутник, вращающийся по орбите вокруг Земли, находится по отношению к Земле в свободном падении и без помех отвечает на гравитационное поле нашей планеты. Однако он не падает на Землю. Таким образом, масса шесть фунтов на спутнике имеет вес ноль фунтов — и то же относится ко всем объектам, сколь бы массивны они ни были. Объекты на орбитальном спутнике являются невесомыми (если точнее, объекты на спутнике «пытаются» ответить на гравитационное поле самого спутника и других объектов на нем, но эти поля ничтожно малы, так что их можно не принимать во внимание).
Значит ли это, что схожесть веса и массы, к которой мы привыкли на поверхности Земли, в космосе не существует? Конечно. Инерция любого объекта — то есть сила, противостоящая ускорению, — зависит только от массы объекта. Большой металлический штырь столь же трудно двигать на Луне, как и на Земле. Трудности в перемещении на космической станции те же, хотя там вес равен нулю.
Астронавтам придется быть осторожными, — и если они не учтут полученных предостережений, то могут умереть.
Каким образом мы можем измерить массу? Единственный способ — использовать нечто вроде устройства из двух чашечек, балансирующих относительно некоего центра. Предположим, что какой-либо объект неизвестного веса помещен в левую чашечку. Она опускается, а правая поднимается.
Далее предположим, что мы кладем несколько металлических брусков, каждый из которых весит ровно один грамм, в правую чашечку. Пока вес всех брусков будет меньше веса объекта, находящегося в левой чашечке, правая останется поднятой. Как только вес содержимого левой и правой чашечек станет одинаковым, они установятся на одном уровне и, таким образом, вес объекта в левой чашечке будет нам известен.
Но теперь оба веса одновременно являются объектами влияния гравитационного поля, так что эффект этого поля уравновесится. Если это поле усилится или ослабнет, то, соответственно, усилится или ослабнет его влияние на оба объекта одновременно, так что они все равно окажутся сбалансированными. К примеру, эти два тела сохранят свой баланс, если их перенести на Луну. Такой баланс означает, что осталось только одно свойство, которое можно измерить, — масса.
Ученые предпочитают измерять массу, а не вес, и потому используют понятия «более массивный» и «менее массивный» вместо «более тяжелый» и «более легкий» (хотя часто и они делают оговорки).
И даже ученые еще окончательно не освободились от «доньютоновского» мышления через три столетия после Ньютона.
Попытайтесь представить себе такую ситуацию: химик тщательно измеряет массу какого-либо объекта, используя точные химические весы, и добивается того, что две чашечки весов, как мы описали выше, приходят в равновесие. Что он делает? Он «измеряет массу» объекта. Можно сказать это короче? Очевидно, нет. Нельзя ведь сказать, что он «отмассил» объект или «смассил» его. Единственное, что он все же может произнести, — это то, что он «взвесил» объект, и он обязательно так скажет. И я тоже так скажу.
Но взвесить предмет — значит определить его вес, а не его массу. Мы вынуждены использовать термины, что были до Ньютона.
Эти маленькие частицы металла, каждая из которых весит по грамму (или любой другой весовой эквивалент), должны получить название «стандартные массы», если они используются для измерения массы. Но они не используются. Они называются «вес».
Химик часто имеет дело с массами атомов, из которых состоят различные элементы. Эти массы называют «атомными весами». Но на самом деле это не веса, это массы. (В русском языке используется термин «атомная масса». — Примеч. пер. )
Короче, независимо от того, знает ученый разницу между понятиями «масса» и «вес», он тем не менее пользуется устоявшимися терминами. Здесь он похож на даму, которая не видела разницы между выражением «единственный сын» и «единственный ребенок».
Но продолжим. В предыдущей главе я говорил о массах астрономических объектов в терминах массы Земли. Юпитер в 318 раз массивнее Земли; Солнце в 330 000 раз массивнее Земли; Луна в 1/ 81раза массивнее Земли и так далее.
Но какова масса Земли в килограммах (или в любых других единицах массы, которые мы можем сопоставить со знакомыми нами объектами)?
Чтобы определить это, мы должны воспользоваться уравнением Ньютона, приведенным в предыдущей главе, то есть:
F = GmM / d 2(уравнение 1).
Если это уравнение применять, например, к падающему камню, то F — это гравитационная сила, воздействующая на камень, G — универсальная гравитационная постоянная, m — это масса камня, M — масса Земли, a d — расстояние от центра камня до центра Земли.
Читать дальшеИнтервал:
Закладка: