Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
- Название:(Не)совершенная случайность. Как случай управляет нашей жизнью
- Автор:
- Жанр:
- Издательство:Livebook/Гаятри
- Год:2010
- Город:Москва
- ISBN:978-5-9689-0171-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью краткое содержание
В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.
Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.
(Не)совершенная случайность. Как случай управляет нашей жизнью - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Большинство считает, что началась научная революция в 1583 г, всего через семь лет после смерти Кардано. Легенда гласит, что именно в этом году в Пизанском университете на лекции сидел один студент, который вместо того, чтобы внимать словам службы, смотрел на нечто гораздо более занимательное: на подвесную вращавшуюся лампу. Используя свой пульс в качестве таймера, студент, Галилео Галилей, заметил: время, за которое лампа проходит большую дугу, равно времени, за которое она проходит малую дугу. Из этого наблюдения родился закон: период колебаний маятника не зависит от его амплитуды. Наблюдения Галилео отличались точностью и практичностью, они были простыми, но знаменовали собой новый подход к описанию физических явлений: наука, исследуя законы природы, стала основываться на опыте и эксперименте, а не на интуитивных догадках и отдельных умозаключениях. Однако самое главное в том, что эти опыты и эксперименты стали проводиться с помощью математических вычислений.
Исходя из своих научных знаний, Галилео написал небольшую работу об азартных играх: «Размышления на тему игры в кости». Работа была напечатана по заказу покровителя Галилео, герцога Тосканского. Герцога интересовал вопрос: почему при броске трех костей чаще выпадает 10, чем 9? Вероятность такой ситуации равна всего лишь примерно 8%, ни 10, ни 9 не выпадает слишком часто. Видимо, герцог много играл, раз подметил такую небольшую разницу, и вполне возможно, что на самом деле он нуждался не в уме Галилео, а в пошаговой программе избавления от зависимости. Неизвестно, почему, но Галилео тема не вдохновила. Однако как любой советник, который хочет сохранить за собой место, он оставил свое недовольство при себе и выполнил заказ.
Если бросить один кубик, шансы того, что выпадет любая конкретная цифра, равны 1 из 6. Однако если бросить два кубика, шансы в сумме уже не равны. Например, для суммы кубиков, равной 2, существует 1 шанс из 36, однако шанс увеличивается в два раза, если сумма равна 3. Причина в том, что сумму 2 можно получить только одним способом: подбросив два кубика, которые выпадут единицами, но сумму 3 можно получить уже двумя способами: подбросив два кубика, которые выпадут единицами; подбросив кубики так, чтобы выпали 1 и 2 (или 2 и 1). Таким образом, мы продвигаемся еще дальше в понимании случайных процессов, которые и составляют тему данной главы: развитие систематических методов анализа числа способов тех или иных исходов.

Ошибку герцога можно обнаружить, если подойти к проблеме с позиций талмудиста: чем пытаться объяснить, почему 10 выпадает чаще, чем 9, лучше задаться вопросом: а почему 10 должна выпадать чаще, чем 9? Появляется соблазн — поверить, что два кубика должны выпадать в сумме 10 и 9 с одинаковой частотой: и 10, и 9 можно представить 6 способами, в зависимости от того, как упадут три кубика. Для 9 можно записать такие способы следующим образом: (621), (531), (522), (441), (432) и (333). Для 10 это (631), (622), (541), (532), (442) и (433). Применяя закон Кардано о пространстве элементарных событий, получаем: вероятность благоприятного исхода равна соотношению исходов, которые благоприятны. Сумма 9 и 10 может быть составлена теми же 6 способами. Тогда почему одно вероятнее другого?
А потому, что, как я уже говорил, закон пространства элементарных событий в его первоначальной форме применим только к тем исходам, которые обладают равной вероятностью. Вышеприведенные же комбинации таковыми не являются. К примеру, исход (631), то есть бросок, в результате которого выпадают 6, 3 и 1, обладает шестикратной вероятностью по сравнению с исходом (333), поскольку хотя и существует один способ, в результате которого выпадают три 3, способов, в результате которых получаются 6, 3 и 1, целых шесть: можно получить 6, затем 3 и 1, или же сначала 1, затем 3, а потом уже 6, ну и так далее. Представим запись исхода, где порядок бросков записывается трехзначными, разделенными запятой комбинациями. Тогда все то, что мы только что сказали, можно выразить короче: исход (631) состоит из возможностей (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3) и (6,3,1), а исход (333) состоит только лишь из (3,3,3). Как только мы упростили запись таким вот образом, стало понятно: исходы одинаково вероятны, и можно применить закон. Поскольку существует 27 способов получить общую сумму в 10, бросая три кости, но лишь 25 способов получить сумму в 9, Галилей заключил: при броске трех костей вероятность выпадения 10 равна 27/ 25, то есть около 1,08 раза больше.
Решая поставленный перед ним вопрос, Галилей косвенным образом применил следующий важный принцип: «Вероятность события зависит от числа его исходов». Ничего удивительного в самом утверждении нет. Удивительно том, насколько обширен эффект, и насколько трудно его подсчитать. Предположим, вы даете 25 шестиклассникам список из 10 вопросов, на которые надо ответить быстро, не задумываясь. Подсчитаем возможные результаты одного конкретного ученика: он отвечает на все вопросы правильно; отвечает на 1 вопрос неправильно — тут возможны 10 вариантов, потому как вопросов 10; отвечает на 2 вопроса неправильно — возможны 45 вариантов, потому как вопросы группируются в 45 пар, и так далее. В результате в среднем в группе студентов, пытающихся угадать правильные варианты ответов, на каждого студента, который угадает 100% правильных ответов, приходится около 10 студентов, которые дадут 90% правильных ответов, и 45 студентов, которые дадут 80% правильных ответов. Шансы получить около 50 баллов, конечно, все же выше, но в классе из 25 учеников вероятность того, что хотя бы один ученик получит 80 баллов или выше, если все ученики отвечают наугад, равна 75%. Так что если вы преподаватель со стажем, то наверняка в вашей многолетней практике среди всех учеников, которые являлись на урок неподготовленными и более-менее угадывали ответы на контрольной работе, были и такие, которые умудрялись в итоге получить четверки или даже пятерки.
Несколько лет назад в Канаде проводилась государственная лотерея, и когда устроители решили вернуть накопившиеся призовые деньги, за которыми никто так и не пришел, они на собственном горьком опыте убедились в том, как важен тщательный подсчет {68} 68 Henk Tijms, Understanding Probability: Chance Rules in Everyday Life (Cambridge: Cambridge University Press, 2004), p. 16.
. Они приобрели 500 машин в качестве бонусов и запрограммировали компьютер таким образом, чтобы из 2,4 млн подписчиков на лотерейные билеты машина произвольно выбрала 500 счастливчиков. Затем список был опубликован. К смущению устроителей лотереи, один господин заявил (надо заметить, справедливо), что выиграл две машины. Устроителям было чему изумиться: из 2,4 млн номеров компьютер вслепую выбрал один и тот же номер дважды. Как могло такое случиться? Может, ошибка в программе?
Интервал:
Закладка: