Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью

Тут можно читать онлайн Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Livebook/Гаятри, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью краткое содержание

(Не)совершенная случайность. Как случай управляет нашей жизнью - описание и краткое содержание, автор Леонард Млодинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.

Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.

(Не)совершенная случайность. Как случай управляет нашей жизнью - читать онлайн бесплатно ознакомительный отрывок

(Не)совершенная случайность. Как случай управляет нашей жизнью - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Леонард Млодинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Точно такой же ход рассуждений вполне применим и в момент начала игр Мировой серии, то есть еще до того, как первая игра сыграна. Если две команды обладают равными шансами на победу в каждой из игр, они обладают равными шансами и на победу в Мировой серии. Однако такой же ход рассуждений верен и в том случае, если их шансы на победу не равны, за исключением того, что приведенные мной несложные расчеты несколько меняются: каждый исход должен быть подкреплен фактором, описывающим его относительную вероятность. Если вы произведете эти расчеты и проанализируете ситуацию в самом начале игр Мировой серии, увидите: при серии в 7 игр велик шанс того, что менее сильная команда в итоге оказывается чемпионом. К примеру, если команда достаточно сильна, чтобы гарантированно обыграть другую в 55% игр, более слабая команда тем не менее выиграет серию из 7 игр с вероятностью, равной примерно 4 из 10. Если же от более сильной команды ожидают победы над соперниками с вероятностью в 2 случаях из 3, соперники все же победят в серии из 7 игр с вероятностью около одного на каждые 5 игр. И спортивным лигам этого никак не изменить. К примеру, в случае вероятности 2/ 3придется сыграть как минимум 23 игры, чтобы определить победителя со статистически значимой долей уверенности, то есть команда послабее оказалась бы победителем в 5% или менее случаев (см. главу 5). В случае же соотношения 55 к 45 статистически значимой окажется серия из 269 игр. Вот уж точно утомительное занятие! Так что соревнования в спорте могут быть азартными и зрелищными, однако титул «всемирного чемпиона» не очень-то надежный показатель истинного положения дел.

Как я уже говорил, такой ход рассуждений применим не только к играм, будь они спортивными или азартными. К примеру, соперничают две компании или же два сотрудника одной компании, причем соперничество проходит почти на равных. Одержавший верх и потерпевший поражение могут выявляться раз в квартал или раз в год, однако чтобы получить точный ответ на вопрос, какая компания или какой сотрудник сильнее, путем простого сравнения — кто кого — нужно сравнивать десятилетиями, а то и столетиями. Например, если сотрудник А действительно сильнее и в скором времени продемонстрирует лучшие производственные показатели по сравнению с сотрудником В в 60 случаях из 100, в простых сравнениях из 5 исходов сотрудник послабее тем не менее одержит верх почти в одной трети случаев. Так что крайне ненадежно оценивать способности по краткосрочным результатам.

Во всех этих задачах подсчет достаточно прост и особых усилий не требует. Однако когда речь заходит о действительно больших числах, произвести подсчеты сложнее. К примеру, рассмотрим такую задачу. Вы занимаетесь приготовлениями к свадебному банкету на 100 человек, каждый из столиков рассчитан на 10 гостей. Вы не можете посадить двоюродного брата Рода с вашей подружкой Эми, потому что восемь лет назад они встречались, и Эми дала Роду отставку. С другой стороны, и Эми, и Летиция хотят сидеть рядом с другим вашим двоюродным братом, душкой Бобби, а вот тетю Рут надо от них отсадить, иначе потом все эти заигрывания еще лет пять будут предметом обсуждений на семейных сборищах. Итак, вы тщательно взвешиваете вероятности. Возьмем для начала первый столик. Сколькими способами можно из 100 гостей выбрать 10? Вопрос очень похож на следующие: сколько существует способов, чтобы разместить 10 инвестиционных пакетов между 100 инвестиционными фондами, или же распределить 10 атомов германия в 100 позициях кремниевого кристалла? Задача такого рода периодически всплывает в теории случайности, и не только в приложении к проблеме очков. Однако в случае с большими числами утомительно, а то и попросту невозможно подсчитывать вероятности, составляя из них список. Вот в чем истинное достижение Паскаля: общеприменимый и систематический подход к подсчету, позволяющий получить ответ путем расчетов по формуле или вывести его из табличных значений. Подход основан на любопытном расположении чисел — в форме треугольника.

картинка 13

Вычислительный метод, лежащий в основе работы Паскаля, в действительности был открыт китайским математиком Цзя Сянем около 1050 г., а опубликован другим китайским математиком, Чжу Шицзе, в 1303 г., и только после этого стал частью более великого — теории вероятностей Паскаля, который в конечном счете и стяжал лавры славы {75} 75 See A.W.F. Edwards, Pascal's Arithmetical Triangle: The Story of a Mathematical Idea (Baltimore: Johns Hopkins University Press. 2002). . Однако предшествовавшие труды Паскаля не заботили. «Пусть не говорят, будто я ничего нового не сказал, — возражает в автобиографии Паскаль. — Новое в построении. Когда мы играем в теннис, мы оба ударяем по одному и тому же мячу, однако один из нас посылает его лучше другого» {76} 76 Blaise Pascal, quoted in Herbert Westren Turnbull, The Great Mathematicians (New York: New York University Press, 1961), p. 131. . Данное ниже графическое изобретение называется «треугольником Паскаля». На рисунке я прервал треугольник — последний ряд у него 10, однако он может продолжаться до бесконечности. В действительности, нет ничего проще, поскольку за исключением 1 в вершине треугольника каждое число является суммой чисел рядом выше слева и справа (прибавьте 0, если в верхнем ряду справа или слева чисел нет).

Треугольник Паскаля Треугольник Паскаля пригождается всякий раз когда нужно - фото 14

Треугольник Паскаля

Треугольник Паскаля пригождается всякий раз, когда нужно выяснить количество способов, посредством которых находится некоторое число предметов из общего числа, равного выбираемому числу или превосходящее его. Вот как использовать треугольник при решении задачи о свадебном банкете. Чтобы найти число размещений гостей по 10 человек при их общем количестве в 100, начнем с того, что спустимся по треугольнику до ряда, обозначенного как 100. У треугольника, приведенного мной, такого ряда нет, он заканчивается рядом 10, однако предположим, что наш треугольник продолжен до ряда 100. Первое число в ряду 100 указывает на количество способов, которыми вы можете выбрать 0 гостей из группы в 100 человек. Способ тут, разумеется, один — вы просто-напросто никого не выбираете. Это верно для какого угодно количества гостей в группе, вот почему первое число в каждом ряду — 1. Второе число в ряду 100 обозначает количество способов, которыми можно выбрать 1 гостя из 100. Способов этих 100: можно выбрать гостя номер 1, либо гостя номер 2, ну и так далее. Подобный ход рассуждений применим к каждому ряду, таким образом, второе число в каждом ряду является просто-напросто числом этого самого ряда. Третье число в каждом ряду обозначает число разных вариантов распределения групп из 2 человек. И так далее. Искомое число — варианты распределения групп по 10 человек — таким образом одиннадцатое по счету в ряду. Даже если бы я продлил треугольник до 100 ряда, число оказалось бы слишком большим, чтобы поместиться на странице. И вообще, когда кто-либо из гостей на свадьбе жалуется, что его не туда посадили, можете объяснить, что вычисление всех возможных вариантов посадки заняло бы у вас слишком много времени: исходя из секунды на каждый вариант, пришлось бы потратить около 10 000 млрд лет. Недовольный гость, конечно же, решит, что вы попросту драматизируете.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Леонард Млодинов читать все книги автора по порядку

Леонард Млодинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




(Не)совершенная случайность. Как случай управляет нашей жизнью отзывы


Отзывы читателей о книге (Не)совершенная случайность. Как случай управляет нашей жизнью, автор: Леонард Млодинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x