Мартин Гарднер - Когда ты была рыбкой, головастиком - я...
- Название:Когда ты была рыбкой, головастиком - я...
- Автор:
- Жанр:
- Издательство:Колибри
- Год:2010
- Город:Москва
- ISBN:978-5-389-00971-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Гарднер - Когда ты была рыбкой, головастиком - я... краткое содержание
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы. И о чем бы ни говорил со своими читателями Мартин Гарднер — о науке или о религии, о Честертоне или Санта-Клаусе, о гибели «Титаника» или о политике, — он демонстрирует глубочайший интеллект, мудрость и добрый, тонкий юмор. Copyright © Martin Gardner, 2009 Published by arrangement with Hill and Wang, a division of Farrar, Straus and Giroux, LLC, New York.
Когда ты была рыбкой, головастиком - я... - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Математические теоремы и объекты, продолжает Херш, подобно «многим другим реалиям культуры» являются «внешними и объективными с точки зрения любой отдельной личности (курсив Херша), но при этом внутренними, историчными и социально обусловленными с точки зрения данного социума или данной культуры в целом (по-прежнему курсив Херша)».
Получается, Херш все-таки не платоник! Неужели он вправду отрицает, что перекладывание камешков с целью доказать, скажем, что число 17 является простым, — это процесс, протекающий «здесь» независимо отданной культуры? Разумеется, манипулирование камешками является культурно обусловленным — в том тривиальном смысле, что вообще всякая человеческая деятельность так или иначе обусловлена культурой. Но не более того. Тот факт, что число 17 — простое, очевидным образом реализуется «здесь», в поведении камешков: по сути, аналогичным образом присутствует «здесь» эллиптическая орбита Марса или спиральная форма нашей галактики.
Херш буквально помешан на втискивании математики в социальность; в своей книге «Что же такое математика?» («Oxford University Press», 1997) пишет даже (крепитесь!), что 8+5 не обязательно равняется 13, ибо у отдельных небоскребов нет тринадцатого этажа. Стало быть, если вы доедете на лифте до восьмого этажа, а потом подниметесь еще на пять этажей, вы окажетесь на четырнадцатом этаже. Вероятно, Херш предполагает тем самым, что в субкультуре некоторых высотных зданий законы арифметики постоянно нарушаются?
Надо ли мне отмечать здесь, что с тех пор, как Декарт арифметизировал геометрию, ее модели тоже в принципе возможно строить с помощью камешков? И в самом деле, Вселенная заполнена моделями почти всех математических областей, объектов и теорий. Любой тополог сумеет доказать, построив грубую модель из конверта и затем разрезав ее пополам, что рассечение бутылки Клейна на две равные части даст две зеркальные ленты Мёбиуса [80] Инструкции, объясняющие, как сделать бутылку Клейна из конверта, см. в главе 2 моей книги Sixth Book of Mathematical Games from Scientific American (New York: W. H. Freeman, 1971).
.
Для комплексных чисел и производных функций, возможно, не существует материальных моделей, однако и эти объекты вкраплениями испещряют Вселенную. Ньютон и Лейбниц, если выражаться обиходным языком, изобрели дифференциальное и интегральное исчисление, но в более глубинном смысле они открыли законы, согласно которым живет Вселенная. Множество Мандельброта не находится вне пространства и времени [81] Множество точек на комплексной плоскости, обладающих определенными свойствами. Понятие введено французским математиком Бенуа Мандельбротом (р. 1924). основателем фрактальной геометрии.
. Оно существует на компьютерных экранах. Неужели антиреалисты считают, что математик, занимающийся свойствами Мандельбротова множества, на самом деле изучает структуры внутри собственного мозга, так как его глаза и мозг воспринимают экран, или что он исследует часть человеческой цивилизации и культуры, к которой он принадлежит, — потому что именно эта цивилизация создала его компьютер?
Подобные рассуждения грешат таким же искажением научного языка, как и заявления, что астрономы, мол, изучают «нездешние» образования, поскольку телескопы — часть человеческой культуры, не говоря уж о том, что и вся астрономия тоже является ее частью. Отсюда недалеко до утверждений, что и вся Вселенная существует лишь потому, что ее наблюдают человеческие цивилизации (а не наоборот — мы существуем, потому что нас создала Вселенная).
Возможно, кардинальные числа, введенные Кантором [82] Кардинальное число множества — обобщение понятия количества (числа элементов множества), имеющее смысл для всех множеств, включая бесконечные. Введено немецким математиком Георгом Кантором (1845–1918), создателем теории множеств
, не находятся «здесь», но кто знает?.. Не исключено, что они скрываются где-нибудь в космосе. Подобно физикам, математики часто совершают открытия, исследуя материальные модели. Классический пример: Фрэнк Морли вывел свою «теорему Морли», изучая углы бумажных моделей произвольных треугольников — моделей таких же «здешних», как камни или звезды. Никоим образом нельзя сказать, будто Морли изобрел свою теорему или нашел ее где-то внутри своего черепа или культуры, к которой принадлежал.
В своей статье Херш справедливо называет меня теистом. И добавляет, что я верю в действенность молитвы. Атеисту Хершу это кажется оскорблением. Что ж, все зависит от значения слова «действенность». Я не верю, что если кто-нибудь помолится о победе футбольной команды или о выздоровлении любимого человека, больного раком, то Господь приложит десницу к Вселенной и тут же ее изменит. Я могу допустить, что Бог вполне способен менять вероятности исхода событий на квантовом уровне, — в наши дни эта догадка популярна среди теистов, — но все же я склонен сомневаться и в этом.
Однако я в самом деле считаю, что молитвы о прощении оправданны, а молитвы о даровании мудрости помогают принимать верные решения. Гилберт Честертон замечает где-то, что для атеиста настанет грустный день, когда с ним произойдет что-то чудесное, а ему будет некого за это поблагодарить.
Херш пишет также, что как-то раз я обвинил его в сталинизме. Не могу себе представить, как бы я мог такое сделать. Если все-таки сделал — приношу свои извинения. Возможно, я однажды напомнил ему душераздирающую сцену из оруэлловского «1984», где чиновник ухитряется, пытая узника, заставить того поверить, что, когда два пальца прибавляют к двум, появляется еще и пятый.
Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш — большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.
Конечно же это не солипсизм в обычном смысле слова. За пределами психиатрических лечебниц вообще нет истинных и последовательных солипсистов. Однако антиреализм Уайта и Херша приправлен социальным солипсизмом — поскольку, по их утверждениям, если исчезнет человеческая цивилизация, уйдет в небытие и вся математика. Ну да, Вселенная при этом не погибнет, однако больше не останется никого, кто занимался бы математикой (разве что ученые на других планетах). Полагаю, Херш согласится: то, что мы называем математическими структурами и явлениями, будет по-прежнему существовать, однако если не останется ни одного разумного существа, которое бы изучало их, во Вселенной не будет ничего, что заслуживало бы названия математики.
Читать дальшеИнтервал:
Закладка: