Владимир Кирсанов - Научная революция XVII века
- Название:Научная революция XVII века
- Автор:
- Жанр:
- Издательство:Наука
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Кирсанов - Научная революция XVII века краткое содержание
Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.
Научная революция XVII века - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В это время его научные занятия не позволяют выделить какого-либо доминирующего направления: он увлеченно занимается оптикой, строит первую модель отражательного телескопа, проводит долгие часы в химической лаборатории (алхимия — его новое увлечение!), по-прежнему много размышляет о математических проблемах. Но, говоря о математике, интересно подчеркнуть связь между его знаменитым трактатом «Об анализе с помощью уравнений с бесконечным числом членов» и историей его назначения профессором люкасовской кафедры. Собственно, трактат этот знаменит потому, что до последнего времени более ранние работы Ньютона были неизвестны, а результаты именно этих работ составляют основное содержание трактата. Его появление было стимулировано появлением книги Николаса Меркатора «Логарифмотехния», где дано разложение в степенной ряд логарифма (ряд для ln(1+x) получался в результате простого деления единицы на 1 + x и последующего почленного интегрирования), таким образом, давалось ясное указание на то, что использование рядов является мощным методом вычислений. Ньютон сразу понял, что Меркатор стоит в начале того самого пути, на котором стоял он сам четыре года назад, и он определенно не хотел, чтобы полностью разработанный им метод стал считаться заслугой человека, который сообщил лишь один частный пример этого метода. Поэтому он в спешке принялся за составление трактата «Об анализе».
То, каким образом книга Меркатора попала к Ньютону, служит свидетельством роста его известности и вместе с тем дает еще один пример роли посредников в научном сообществе XVII в. В данном случае таким посредником был Джон Коллинз, математик-любитель, через которого многие английские ученые вели переписку между собой и со своими зарубежными коллегами; с 1670 г. его регулярным корреспондентом стал и Ньютон. В начале 1669 г. Коллинз послал книгу Меркатора Барроу, а в июле получил ответ. Из ответа следовало, что коллега Барроу по университету, человек «необычайных способностей» (a very excellent genius) в математике «на следующий день принес ему несколько статей, в которых он излагает методы расчета величин, похожие на метод Меркатора для гиперболы [т. е. для 1/(1+x)], но значительно более общий» [4, I, с. 13].
Это письмо свидетельствует о том, что к июлю 1669 г. Ньютон и Барроу уже были хорошо знакомы, по-видимому, Барроу узнал о работах Ньютона после его возвращения в Кембридж, во всяком случае, ко времени получения книги Меркатора он был хорошо осведомлен о его результатах в области нового анализа, почему и сообщил Ньютону о книге.
Ньютон был весьма озабочен вопросом о приоритете, времени у него было мало, поэтому трактат «Об анализе» он написал в явной спешке, «со многими вычеркиваниями и переделками, а также с отдельными частными ошибками, которые Ньютон мог бы исключить и, наверное, исключил бы, будь у него время» [6, II, с. 165]. В результате Коллинз получил трактат в конце июля 1669 г., который был послан ему Барроу, чтобы таким образом оповестить ученый мир о достижениях Ньютона и доказать его приоритет.
Рукопись «Об анализе» представляла собой систематический обзор ранних исследований Ньютона, но, как справедливо указывает А. П. Юшкевич, «необходимо подчеркнуть наличие в сочинении “Об анализе” важных приемов и идей, отсутствующих в более ранних, дошедших до нас рукописях, хотя, быть может, известных Ньютону и ранее лета 1669 г. Это прежде всего прием численного решения уравнений, и особенно решение буквенных уравнений по способу, вскоре изложенному им в форме так называемого параллелограмма Ньютона,— именно этот прием сообщал в глазах Ньютона и его последователей широкую применимость метода флюксий. Это, далее, замечательный по простоте вывод правила дифференцирования x nпри любом рациональном n и, наконец, заключительные соображения о сходимости возникающих при решении бесконечных рядов» [7, с. 159—160].
Коллинз был достаточно искушенным математиком, чтобы понять значение полученных Ньютоном результатов, поэтому прежде чем возвратить рукопись Барроу (как тот просил в сопроводительном письме), Коллинз снял копию, которую не только показал своим друзьям и знакомым, но и написал и послал изложение трактата наиболее знаменитым из своих корреспондентов — Джеймсу Грегори в Шотландию, Рене Слюзу в Голландию, Джованни Альфонсо Борелли в Италию и Жану Берте во Францию. Так Ньютон стал приобретать европейскую известность.
Теперь становится понятным, почему Барроу счел Ньютона наиболее достойным преемником на люкасовской кафедре. К 1669 г. он был хорошо знаком с математическими работами Ньютона и вполне сумел оценить его very excellent genius.
Но действительно ли дело обстояло таким образом, что Барроу отказался от кафедры в пользу Ньютона из-за того, что считал его более достойным? Результаты исследований последнего времени показывают, что на этот вопрос следует ответить отрицательно. Живучесть такой версии определяется тем, что она принадлежит самому Ньютону: много лет спустя Ньютон рассказал Конти, что в некоторой задаче о циклоиде Барроу получил довольно громоздкое решение и был поражен, когда Ньютон получил требуемый результат в шесть строк. Тогда будто бы Барроу признался Ньютону, «что он лучший ученый, чем он сам» («that he more learned than he»), и отказался от кафедры [2, с. 206]. «Этот рассказ,— говорит Уэстфолл,— совершенно невозможно согласовать с обычаями университета после Реставрации» [2, с. 206]. Но дело скорее даже не в этом. Барроу не был удовлетворен своим положением люкасовского профессора. Он считал себя в первую очередь богословом, а не математиком, а кроме того, он рассчитывал на продвижение по службе, и, как показали дальнейшие события, не без оснований. Не прошло и года после отставки Барроу, как он был назначен духовником короля, а через три года он становится магистром (т. е. главой) Тринити-колледжа. С другой стороны, устав люкасовской кафедры запрещал Барроу-профессору любое продвижение по священнической или богословской линии.
Итак, Барроу оставил кафедру ввиду получения высокого поста, который более соответствовал его честолюбивым амбициям и его представлению о себе самом, а вовсе не потому, что он считал себя хуже Ньютона. (Отметим, кстати, что тот же устав допускал тьюторство только по отношению к студентам — членам общины, и потому Барроу никогда не мог быть тьютором Ньютона, как это часто утверждается.) Но если Барроу отказался от кафедры по соображениям, не связанным с Ньютоном, он, без всякого сомнения, способствовал его назначению на должность профессора, и притом весьма энергично. Для этого он обладал достаточными связями и влиянием.
Как известно, вся эта история окончилась тем, что 26 октября 1669 г. в возрасте 26 лет Ньютон стал вторым люкасовским профессором математики и занимал эту кафедру в продолжение 27 лет вплоть до своего переезда в Лондон.
Читать дальшеИнтервал:
Закладка: