Владимир Кирсанов - Научная революция XVII века

Тут можно читать онлайн Владимир Кирсанов - Научная революция XVII века - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Наука, год 1987. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Кирсанов - Научная революция XVII века краткое содержание

Научная революция XVII века - описание и краткое содержание, автор Владимир Кирсанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.

Научная революция XVII века - читать онлайн бесплатно полную версию (весь текст целиком)

Научная революция XVII века - читать книгу онлайн бесплатно, автор Владимир Кирсанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ФРАНСУА ВИЕТ Задуманное Виетом предприятие прежде всего требовало серьезного - фото 19
ФРАНСУА ВИЕТ

Задуманное Виетом предприятие прежде всего требовало серьезного усовершенствования тригонометрии и методов вычислений. Идя по этому пути, он достиг многих выдающихся результатов. Основной заслугой Виета было усовершенствование теории алгебраических уравнений. То, что до него решалось с помощью искусственных приемов и подстановок, приобрело у Виета характер аналитического вывода общих закономерностей, обнимающих все случаи данного тина. Этого ему удалось достичь, введя стройную, хотя и несколько тяжеловесную систему обозначений в алгебре. Цейтен пишет, что несмотря на то, что «изображение числовых уравнений у него столь просто, как у Бомбелли и Стевина, но зато у него есть нечто такое, чего еще не было у последнего и благодаря чему Виет является создателем алгебраической формулы и алгебраической символики» {8, с. 101}. Величины, встречающиеся в уравнениях, Виет обозначал буквами, причем неизвестные обозначались гласными, а коэффициенты — согласными, он также ввел в употребление знаки «+», «—» и знак квадратного корня, в то же время некоторые вещи он все еще записывал словами. Например, вместо знака равенства (вошедшего в употребление благодаря Томасу Гарриоту, хотя первым его ввел его соотечественник Рекорд) он писал aequatur, вместо знака умножения — in и т. п., но уже и тех нововведений, которые сделал Виет, было достаточно, чтобы заложить основы теории алгебраических уравнений.

Замечательным достижением Виета было установление связи между тригонометрическими и алгебраическими выражениями. В первых своих работах по тригонометрии «Математический свод» (1571), а также во «Введении в аналитическое искусство» (1591) и в «Первых основаниях видовой логистики» (1592) он решает чрезвычайно актуальную для того времени задачу определения всех элементов треугольника (плоского и сферического) по трем данным, затем он получает формулы для sin nx и cos nx через sin x и cos x. Эти результаты дали ему возможность найти общий подход к решению алгебраических уравнений высших степеней и дать, в частности, решение уравнений 3-й степени для неприводимого случая без использования мнимых чисел (Виет показал, что в данном случае решение сводится к нахождению cos х, если cos 3x известен).

Творчество Виета как математика, несмотря на все его нововведения, было тесно связано с традициями античности. Многие его исследования посвящены геометрической интерпретации решения квадратных и кубических уравнений, в частности он показывает, что решение кубического уравнения равносильно решению двух знаменитых задач древности — построению стороны куба и трисекции угла, причем последняя представляет собой аналог неприводимого случая.

Несмотря на то что собрание сочинений Виета было издано Схоутеном лишь после его смерти, в 1646 г., он и при жизни снискал себе славу выдающегося математика. В 1571 г. Виет переехал в Париж и поступил юристом на королевскую службу. Его таланты высоко ценил Генрих IV, для которого он расшифровал тайнопись, использовавшуюся испанцами в период войны е Францией. Виет не только разгадал пятидесятизначный шифр, но и дал ключ к возможным его вариантам, которыми испанцы пользовались в дальнейшем. Неудивительно, что когда в 1594 г. Генриху сообщили о вызове, который бельгийский математик Адриен ван Роумен бросил ученым всего мира, предлагая решить уравнение 45-й степени с числовыми коэффициентами, король тотчас заметил: «У меня есть математик, и весьма выдающийся Позовите Виета» {8, с. 122}.

Роумен в условии своей задачи указал некоторые частные случаи решения предложенного им уравнения, из чего Виет мгновенно заключил, что на языке геометрии речь идет о вписании пятнадцатиугольника в круг единичного радиуса, и к следующему дню представил королю все 23 положительных решения.

Этот случай способствовал распространению славы Виета за пределами Франции, но подлинное влияние его работ было осознано уже после его смерти.

Глава вторая.

Новая астрономия

1

С древнейших времен люди пытались осмыслить устройство космоса и движение планет. Ко времени Коперника взгляды на мироздание основывались на представлениях Аристотеля и кинематической модели Птолемея. Согласно Аристотелю, космос имеет шаровидную форму, он вечен и неподвижен, за его пределами не существует ни времени, ни пространства. В центре его располагается Земля, а затем Луна и другие планеты. Он подразделяется на две области, резко отличающиеся друг от друга — подлунную, или земную, область и надлунную. Соответственно отличаются и законы, управляющие миром внутри лунной сферы и вне ее. Земной мир представляется областью всевозможных изменений: возникновения, роста и гибели, в надлунной же сфере все неизменно и постоянно, там ничего не может ни возникать, ни уничтожаться. Для небесного мира характерны лишь круговые равномерные движения, поскольку окружность является наиболее совершенной кривой, так же как сфера — самым совершенным телом. Так как для Аристотеля наличие пустоты было абсолютно неприемлемо, он наполнил надлунную область эфиром, невесомым пятым элементом, в то время как земные материальные тела у него состоят из остальных четырех элементов — воздуха, воды, земли и огня.

Картина небесных движений дана Аристотелем чисто качественно: весь космос представляет собой конструкцию из концентрических сфер, имеющих эфирную природу; внешняя сфера является сферой неподвижных звезд, которая вращается со скоростью 24 часа в сутки и служит причиной движения большинства остальных 55 сфер, имеющих различные скорости и различные направления вращения. Такое количество сфер потребовалось Аристотелю потому, что он использовал для объяснения видимого движения планет гомоцентрическую схему Евдокса — Каллиппа. Согласно этой схеме, сложное движение планеты на видимом небосводе складывалось из нескольких круговых движений, поэтому каждой планете придавалось некоторое число сфер по числу движений, необходимых для получения результирующего движения; ось каждой последующей внутренней сферы жестко фиксировалась внутри предыдущей, а планета прикреплялась к самой последней внутренней сфере. Число сфер, управляющих движением планеты в модели Евдокса — Каллиппа, варьировалось от трех до пяти, но, поскольку Аристотель поставил движение планет в зависимость от вращения самой внешней сферы неподвижных звезд, он пришел к необходимости добавить для каждой из планет по нескольку «нейтрализующих» сфер, которые исключали бы влияние вращения предыдущей, внешней, планеты на последующую, внутреннюю. Таким образом, общее число сфер возросло от 27 (у Евдокса) или 34 (у Каллиппа) до 56 (включая сферу неподвижных звезд) у Аристотеля.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Кирсанов читать все книги автора по порядку

Владимир Кирсанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Научная революция XVII века отзывы


Отзывы читателей о книге Научная революция XVII века, автор: Владимир Кирсанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x