Алексей Чачко - Искусственный разум
- Название:Искусственный разум
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Чачко - Искусственный разум краткое содержание
В книге рассказывается об одном из самых дерзких замыслов человечества - создании искусственного интеллекта. Вмешательство интеллектуальных машин в дела людей резко ускорит научно-технический прогресс. К 2000 году эти машины почти полностью заменят людей на конвейерах массовых производств; они будут сборщиками автомобилей и телевизоров, тракторов и холодильников, самолетов и часов и многого другого. XXV съезд КПСС назвал это направление научно-технического прогресса среди немногих, 'играющих особую роль в десятой пятилетке и определяющих перспективы долгосрочного развития экономики'.
Искусственный разум - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но куда там! Рабы количественной математики, большие ученые и слушать не хотели Гулливера. Им и так все было ясно - на столе стоит рельплюм сколькатс, уродец, игра природы.
Гулливер, врач и мореплаватель, выполнил всю работу за них. Его нечеткие, расплывчатые методы действовали прекрасно - он раскрыл подноготную бробдингнегского общества, постиг тонкости этикета и законы управления государством.
Нет, давно пора свергнуть с пьедестала идол точного, подсчитанного, количественного. В наш век бурного развития математики мы все сделались немного пифагорейцами - млеем перед Числом. Нестрогое, неточное, качественное мы презираем, ну, от силы терпим до той ближайшей поры, когда яркое количественное солнце развеет мрак приблизительности!
Математические опыты Гулливера в стране великанов
Глубокое заблуждение. Бессмысленно, например, привязывать ход мысли к осям X, У и Z, будто это орбита космического корабля. Горы чисел-координат исчерпывающе расскажут о движении корабля и ничего не сообщат о мысли. Для очень сложных систем - мышления, языка, общества - нужно жертвовать точностью, чтобы проникнуть в сущность.
Математика, которую автор в запальчивости грозится сбросить с атомохода современности, всегда была верной служанкой людей в их наступлении на сложные системы.
Вспомните первый великий подвиг математики - ее роль в рождении могучего мира механизмов и машин. Рычаги, блоки, полиспасты, станки, поезда, космические корабли многим обязаны пропорциям, многочленам, алгебраическим и дифференциальным уравнениям. Своими орудиями поразила математика неизведанную сложность, схватила внутренние ее законы, отбросив несущественное, и позволила нам сегодня называть этот мир миром классической механики или миром организованной простоты.
Вспомните второй великий подвиг математики - вторжение в страну неорганизованной сложности. Туда, где слепо тычутся в тепловом танце миллионы молекул, где напрасно ищет порядка демон Максвелла, где срываются со своих орбит электроны и вдребезги разлетаются ядра. В страну, в которой так любят говорить о смерти - тепловой смерти вселенной или термоядерной смерти теплокровных. Бросив в дело статистику и теорию вероятностей, использовав резерв неэвклидовых геометрий, математика победила неорганизованную сложность. И попала в третий мир, в мир, где живут язык, мышление, общество.
Про них не скажешь - неорганизованные, им свойственна высочайшая организация. Про них язык не повернется заявить - простые. Они состоят из миллионов и миллиардов разнообразно сплетенных элементов, они непрерывно изменяются, реорганизуются, дышат, живут.
Количественная математика споткнулась об эту организованную сложность. Ее орудия, отточенные в других боях, оказались здесь почти бесполезными, как бессильны дротики дикарей против ружейного огня колонизаторов. А мы, привыкшие к победному маршу математики, не желаем взглянуть правде в глаза: веруем в математику, в ее количественную непогрешимость.
Построить Искинт без математики, конечно, нельзя. Но нужна новая математика - математика нечетких объектов.
Математика нечетких объектов... В самом словосочетании скрывается противоречие. Математика, казалось бы, должна вносить в объекты, в реальную жизнь четкость, меру и число. Если при этом возникают ошибки, математика учитывает их влияние, надевая и на ошибки узду меры и числа. А тут нечеткость, расплывчатость - давнишние, всегдашние враги математики, исконные и смертельные ее неприятели - оказываются добрыми друзьями, первыми зваными гостями.
Чтобы построить Искинт, нужно не просто развитие математики, нужна коренная революция в математике.
Двенадцать лет назад на одном международном совещании я услышал горячее, по-восточному темпераментное выступление американского ученого Лофти Заде, который рассказывал о фази-множествах.
Понятие "множества" - одно из основных в математике; на него опираются и алгебра, и геометрия, и логика. Что такое "множество" - известно. А вот что значит "фази"?
Если от английского произношения докладчика вернуться к латинскому написанию слова, оно из "фази" превратится в "фузи". И это "фузи" встречалось нам еще в школе, скажем, в слове "диффузия". "Диффузия" в прямом переводе - это "разлитие".
Те из читателей, кто любит историю, легко вспомнят, что пушка в петровские времена называлась "фузия" (или "фузея"), то есть "литье".
Литье, разлитие, размытость... Л. Заде говорил о размытых множествах!
Простое, неразмытое множество состоит из элементов, которых может быть и один, и десять, и любое другое количество. Сколько бы их ни было, они принадлежат данному множеству, входят в него, являются его членами, а другие элементы не принадлежат, не входят, не являются. Простое множество напоминает клуб со строгими правилами - в него пропускают только членов этой организации.
Размытое множество устроено совсем иначе. Если это и клуб, то клуб с мягкими правилами: вместо непременного членства здесь большая или меньшая склонность, степень принадлежности, мера близости. Скажем, утверждение "молодой" будет выглядеть на языке размытых множеств так:
молодой =0,1/15+0,9/20+1,0/25+0,7/30+0,2/40+0,1/50
Прочтем эту запись. Числа 15, 20, 25, 30, 40 и 50 означают возраст. Молодому человеку может быть и 15, и 20, и 25, и 30, и 40, и 50 лет. К каждому возрасту привешен своеобразный ярлычок - мера близости. Для 15 лет эта мере невелика - всего 0,1. Столь же мала она для 50 лет. Зато для 25 лет она максимальная - 1,0.
Значит, "молодой" - множество возрастов, в которое, безусловно, входит 25 лет, чуть в меньшей степени 20 лет, еще в меньшей - 30 и совсем в малой - 15 или 50. Перед нами спектр чисел, передающий оттенки понятия "молодой". Если сравнить смысл слова "молодой" со сложной краской, то формула представляет собой как бы рецепт составления ее из простых тонов: возьми 0,1 часть возраста "15 лет", смешай ее с 0,9 частями возраста "20 лет", добавь к смеси 1,0 части оттенка "25 лет"...
Спору кет, любопытная запись. Но полезная ли? Понятие "молодой" мы определили, а дальше что? Предположим, о человеке говорят - "очень молодой". Позволяет ли теория вычислить, что это означает? Да. Вот результат:
очень молодой=молодой2.
Вы не ошиблись, читатель, правая часть формулы гласит: "молодой в квадрате". В точности как в школе: у=х2.
Ну а если сказать - "не очень молодой и не очень старый", смысл сего нечеткого заявления можно исчислить? Пожалуйста:
не очень молодой и не очень старый=∇ (молодой)2 ∩ ∇ (старый)2.
Перед нами снова формула, в которой, быть может, не все символы вам знакомы. И бог с ними - не стоит тратить время на подробности, потому что вам отлично знакомо главное, потому что в новой одежде вы узнали старых друзей: у=х2, z=х2-у2 и другие, и прочие, и прочие. Алгебра это!
Читать дальшеИнтервал:
Закладка: