Сергей Минаков - Таинственные явления природы и Вселенной
- Название:Таинственные явления природы и Вселенной
- Автор:
- Жанр:
- Издательство:Клуб Семейного Досуга
- Год:2014
- Город:Белгород
- ISBN:978-5-9910-2816-5,978-966-14-7242-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Минаков - Таинственные явления природы и Вселенной краткое содержание
Мир вокруг нас полон тайн и чудес, а человека всегда влекло необъяснимое и неизведанное… Удивительные факты, поразительные загадки, потрясающие открытия и самые смелые гипотезы — для всех, кто ищет истину!
Человек, Земля, Вселенная… Что знаем мы о мире, в котором живем? Здесь вы найдете ответы на вопросы, которые давно себе задавали.
— Как появилась жизнь на Земле?
— Какими могут стать люди в далеком будущем?
— Отчего случаются землетрясения, цунами и извержения вулканов?
— Как возникла Вселенная и что было, когда ее еще не было?
— Что будет, если Солнце потухнет?
— Есть ли жизнь на других планетах?
— Что такое черные дыры и имеет ли вес пустота?
Таинственные явления природы и Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из-за исчезающе малого размера и бесконечной плотности материи математические величины, фигурирующие в уравнениях Эйнштейна, становятся неопределенными, а пространство-время не может продолжаться за этими точками. Такие точки называют сингулярностями пространства-времени (слово «сингулярность», собственно, и означает особенность, инаковость).
Сферическую вселенную можно представлять расширяющимся и сжимающимся воздушным шаром. По мере расширения шара расстояния между любыми соседними точками или объектами на его поверхности (например, двумя галактиками) будут расти. Таким образом, наблюдатель в любой галактике видит, что остальные галактики разбегаются. Расширение постепенно замедляется гравитацией и, в конце концов, останавливается, сменяясь сжатием. В фазе сжатия расстояния между галактиками будут уменьшаться, и все наблюдатели увидят, что галактики приближаются к ним.
Заметим, что спрашивать, куда расширяется наш мир, просто не имеет смысла. Мы привязаны к поверхности шара и не представляем себе иного измерения (никакого «снаружи» и «внутри» сферы). Подобным образом для наблюдателя в замкнутой вселенной трехмерное сферическое пространство — это все существующее пространство, и вне его ничего нет.
Все это представлялось большинству ученых захватывающей и красивой, но все же чисто теоретической спекуляцией до тех пор, пока в 1929 году в далекой обсерватории Маунт-Вилсон в Америке, после нескольких лет напряженной работы, астроном Эдвин Хаббл не объявил свой потрясающий экспериментальный результат: Вселенная расширяется. Сами галактики не изменяются, но расстояние между ними линейно увеличивается со временем. Это означало, что галактики удаляются от нас, и чем дальше находится галактика, тем быстрее она удаляется. К 1931 году после тщательной проверки в этом больше не осталось сомнений: наблюдения Хаббла показали четкую зависимость между расстоянием до галактик и их скоростью.
Древние инки выделяли на небосводе и давали названия не только звездам и созвездиям, как это привычно нам. Они также именовали черные пятна в Млечном Пути. Среди названий таких межзвездных участков — Лама, Детеныш ламы, Пастух, Кондор, Куропатка, Жаба, Змея и Лиса.
Большой взрыв
Несмотря на изящество идеи Фридмана и высочайшую степень надежности ОТО, и даже невзирая на блестящее подтверждение факта разлета галактик Хабблом, физическое сообщество не торопилось принимать картину нестационарной, расширяющейся Вселенной, начавшейся в некоторой особой точке конечное время назад. Это притом, что против существования вечной и недвижной Вселенной в целом имелись весьма серьезные чисто физические аргументы, которые были известны давно. Но таковы уж были предписания самой классической системы мышления: движению и изменению могут быть подвержены отдельные вещи или даже части мира; однако мир как целое должен оставаться вечным и неизменным. Что можно еще сказать, если даже сам Эйнштейн, как мы уже знаем, стоял на подобных позициях!
Самой известной попыткой согласовать идею стационарной Вселенной с фридмановскими космологическими моделями была, без сомнений, теория стационарного состояния, выдвинутая в 1948 году в Кембриджском университете британским астрофизиком Фредом Хойлом и двумя австрийскими эмигрантами Германом Бонди и Томасом Голдом. Они настаивали, что в своих общих чертах Вселенная всегда остается неизменной, так что во всех местах и во все времена она выглядит более или менее одинаково. Но чтобы компенсировать расширение Вселенной (поскольку после открытия Хаббла в этом нельзя было сомневаться!), Хойл с коллегами постулировал, что вещество постоянно создается из вакуума. Это вещество заполняет пустоты, открывающиеся между удаляющимися галактиками, так что на их месте могут формироваться новые. Конечно, не было никаких подтверждений спонтанного рождения материи, и Хойл, Бонди и Голд это признавали. Однако требуемый теорией темп ее возникновения был всего несколько атомов на кубический сантиметр в столетие, так что не было и наблюдений, свидетельствующих об обратном. Защищая свою теорию, Хойл с коллегами говорили, что непрерывное возникновение материи ничуть не более сомнительно, чем одномоментное рождение всей материи в Большом взрыве.
Кстати, сам термин «Большой взрыв» был придуман именно Хойлом, когда он высмеивал конкурирующую теорию в популярном ток-шоу на радио «Би-би-си».
Между тем, ироническому термину Хойла было суждено стать обозначением одного из основных мотивов современной космологии. Как бы физики ни относились к моделям вселенной Фридмана, их эпохальное значение для науки, а может быть, и для человеческого познания вообще состоит в наличии в них начальной сингулярности, где перестает работать ОТО. В сингулярности вещество сжимается до бесконечной плотности, и становится невозможно распространить решение на более ранние моменты времени. Таким образом, если воспринимать все буквально, Большой взрыв должен рассматриваться как начало Вселенной. Возможно ли, чтобы вся Вселенная началась с единственного события, случившегося конечное время назад?
Многие специалисты считали сингулярность Большого взрыва чисто формальным следствием предположений о строгой однородности и изотропности, которые Фридман использовал для решения уравнений Эйнштейна. Если в коллапсирующей Вселенной все галактики приближаются к нам, то неудивительно, что они столкнутся в одном большом схлопывании. Но если движение галактик будет хоть немного отличаться от радиального, можно предположить, что они «промахнутся» друг мимо друга и начнут снова разлетаться. В таком случае сингулярности удастся избежать, а вслед за сжатием последует новое расширение. Была надежда, что таким способом удастся построить так называемую «осциллирующую» модель Вселенной без начала с чередующимися периодами расширения и сжатия.
Оказалось, однако, что притягивающая природа гравитации делает такой сценарий невозможным. Британские физики Роджер Пенроуз и Стивен Хокинг, тогда еще аспиранты, доказали серию теорем, показывающих, что в очень широком диапазоне условий космологической сингулярности избежать нельзя. Основные предположения, использованные в этих доказательствах, состоят в том, что ОТО Эйнштейна верна и что материя во всей Вселенной обладает положительной плотностью энергии, так что гравитация не может стать отталкивающей. Таким образом, пока мы держимся в рамках ОТО и не предполагаем существования экзотической гравитационно-отталкивающей материи, сингулярность будет неизбежной, а вопрос о начальных условиях останется неразрешенным.
Читать дальшеИнтервал:
Закладка: