Стивен Вайнберг - Объясняя мир. Истоки современной науки
- Название:Объясняя мир. Истоки современной науки
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2015
- Город:Москва
- ISBN:978-5-9614-4084-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Объясняя мир. Истоки современной науки краткое содержание
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.
Объясняя мир. Истоки современной науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Это краткое изложение показывает взгляды Декарта только в самых общих чертах. Его философией всегда восхищались и восхищаются сейчас, особенно специалисты-философы и французы. Меня это ставит в тупик. Просто поразительно, как часто для человека, заявляющего, что он нашел самый лучший метод получения достоверных знаний, Декарт был не прав, говоря о различных явлениях природы. Он был не прав, говоря, что Земля имеет продолговатую форму (то есть расстояние вдоль линии, соединяющей полюсы, больше длины экватора). Он, как и Аристотель, ошибался, утверждая, что вакуум не существует. Он был не прав, доказывая, что свет передается мгновенно {235}. Он ошибался по поводу того, что космос наполнен материальными вихрями, которые передвигают планеты вдоль их траекторий. Он был не прав по поводу шишковидной железы, которая является вместилищем души и отвечает за человеческую совесть. Он ошибался насчет того, что́ именно сохраняется при соударениях предметов. Он был не прав насчет того, что скорость свободного падения пропорциональна пройденному расстоянию. И, в конце концов, основываясь на наблюдении за поведением нескольких любимых домашних котов, я убежден, что Декарт ошибался и насчет того, что животные – это машины, которые не имеют души. У Вольтера были точно такие же сомнения по поводу Декарта:
«Он ошибался по поводу природы души, по поводу доказательств существования Бога, по поводу материи и законов движения, а также относительно природы света; он допускает врожденные идеи, открывает новые элементы, творит мир, преобразует человека на свой собственный лад, и потому справедливо говорят, что человек Декарта на самом деле и есть всего лишь его человек, весьма далекий от человека подлинного» {236}.
Научные заблуждения Декарта не имели бы особого значения, если бы речь шла о работах по этической или политической философии или даже метафизике, но для человека, который писал о «методе, позволяющем направлять свой разум и отыскивать истину в науках», постоянные ошибки не могут не бросать тень на философское суждение. Дедукция просто не может вынести тот груз, который Декарт взвалил на нее.
Даже самые великие ученые ошибаются. Мы уже видели, как Галилей ошибался насчет приливов и комет, и мы увидим, как Ньютон ошибся по поводу дифракции. Но, несмотря на все свои ошибки, Декарт, в отличие от Бэкона, внес значительный вклад в науку. Он содержится в трех приложениях к «Рассуждению о методе» под заголовками «Геометрия», «Оптика» и «Метеорология» {237}. С моей точки зрения, именно эти труды, а не его философские сочинения, являются вкладом Декарта в науку.
Самым большим достижением Декарта было изобретение нового математического метода, который теперь называется аналитической геометрией, где кривые и плоскости представлены в виде уравнений, которым удовлетворяют координаты точек, принадлежащих кривой или плоскости. «Координатами», в общем, могут быть любые числа, которые определяют местоположение точки, – например, долгота, широта, высота над уровнем моря, – но обычно используют декартовы координаты , определяемые расстоянием от точки до некоторого центра и измеряемые вдоль каких-либо взаимно перпендикулярных направлений. Например, в аналитической геометрии круг радиусом R – это кривая, на которой координаты х и у находятся на определенном расстоянии от центра, совпадающего с пересечением двух перпендикулярных прямых, и удовлетворяют равенству x ² + y ² = R ² (в техническом замечании 18 дается подробное описание эллипса). Это очень важное использование букв алфавита, чтобы обозначить неизвестное расстояние или неизвестную величину, берет свое начало в работах французского математика, придворного и специалиста по шифрам XVI в. Франсуа Виета, но Виет еще записывал равенства словами. Современной формой алгебры и ее приложению к аналитической геометрии мы обязаны Декарту.
Используя аналитическую геометрию, мы можем найти координаты точки, где две кривые пересекаются, или получить уравнение кривой, образующейся на пересечении двух поверхностей. Для этого мы должны решить пару уравнений, которые определяют кривые или поверхности. Сегодня большинство физиков решают геометрические задачи именно таким образом, используя аналитическую геометрию, а не классические методы Евклида.
В физике Декарт внес значительный вклад в изучение света. Вначале в «Диоптрике» он описал соотношение между углами падения и преломления света на границе среды А и среды В (например, воздуха и воды): если угол между падающим лучом и перпендикуляром к поверхности среды обозначить как i , а угол между преломленным лучом и этим перпендикуляром – как r , то синус угла {238} i , деленный на синус угла r , равен независимой от значения величин углов постоянной n :
В общем случае, где средой А является воздух (или, строго говоря, пустота), n – это постоянная, которая называется показателем преломления для среды B . Например, если А – это воздух, а В – вода, то n – это показатель преломления воды, который равен примерно 1,33. В любом подобном случае, когда n больше единицы, угол преломления r меньше угла падения i , и луч света, входя в более плотную среду, преломляется, приближаясь к направлению перпендикуляра к поверхности.
Декарт не знал, что то же самое соотношение было в 1621 г. выведено эмпирическим путем голландцем Виллебрордом Снеллиусом, а еще раньше – англичанином Томасом Хэрриотом, а в рукописи Х в. арабского физика ибн Сахля предполагается, что об этом законе уже известно, но Декарт был первым, кто опубликовал это открытие. Сегодня это соотношение во всем мире называют законом Снеллиуса (кроме Франции, где его авторство принято приписывать Декарту).
За доказательством закона преломления Декарта проследить очень трудно, отчасти потому, что он ни в своем описании доказательства, ни в изложении результата не пользовался тригонометрическими понятиями вроде синуса угла, а писал чисто в геометрических терминах, хотя, как мы уже видели ранее, аль-Баттани, чьи работы были хорошо известны в средневековой Европе, заимствовал синус у индийских математиков еще за семь столетий до Декарта. Вывод закона преломления у Декарта основывается на придуманной им аналогии с теннисным мячиком, который разрывает тонкую ткань. Мячик теряет часть своей скорости, но ткань не оказывает никакого эффекта на ту составную часть общей скорости, которая направлена параллельно ткани. Как показано в техническом замечании 27, это допущение привело к результату, о котором мы говорили выше: отношение синусов углов между прямыми, по которым мячик движется к экрану и от него, и перпендикуляра к этому экрану составляет не зависящую от величин углов постоянную n . Хотя в описании Декарта результат увидеть очень трудно, должно быть, он понимал, что у него все верно получилось, потому что, подобрав соответствующие значения для n , дал более-менее правильные численные ответы в теории о радуге, о которой мы поговорим ниже.
Читать дальшеИнтервал:
Закладка: