Стивен Вайнберг - Объясняя мир. Истоки современной науки
- Название:Объясняя мир. Истоки современной науки
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2015
- Город:Москва
- ISBN:978-5-9614-4084-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Объясняя мир. Истоки современной науки краткое содержание
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.
Объясняя мир. Истоки современной науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но что такое атомы? Великим шагом к ответу на этот вопрос стали эксперименты Эрнеста Резерфорда в лаборатории Манчестерского университета, которые в 1911 г. доказали, что вся масса атома золота сконцентрирована в маленьком тяжелом положительно заряженном ядре атома, вокруг которого обращаются более легкие отрицательно заряженные электроны. Электроны ответственны за процессы, происходящие в рамках обычной химии, в то время как изменения в ядре вызывают выделение большого количества энергии, связанной с явлением радиоактивности.
Это вызвало новый вопрос: что удерживает обращающиеся по орбитам внутри атома электроны от потери энергии через излучение и мешает им упасть по спиралям на свои ядра? По идее, не только не должно было существовать стабильных атомов; частоты излучения этих маленьких атомных катастроф сформировали бы непрерывный спектр, что противоречит наблюдениям, в соответствии с которыми атомы могут выделять и поглощать излучение только на определенных дискретных частотах, которые можно увидеть как яркие или темные линии в спектрах газов. Что определяет эти особые частоты?
Ответы были найдены в первые три десятилетия XX в. с развитием квантовой механики – самого радикального направления теоретической физики после работ Ньютона. Как предполагает ее название, квантовая механика требует квантования (что означает – дискретности, нарезки элементарными кусочками) энергий различных физических систем. В 1913 г. Нильс Бор предположил, что атом может существовать только в состоянии определенных энергий, и вывел правила расчета этих энергий для простейших атомов. Еще в 1905 г., использовав более раннюю работу Макса Планка, Эйнштейн уже предполагал, что энергия света передается квантами – частицами, которые позже были названы фотонами. Каждый фотон обладает энергией, пропорциональной частоте света. Как объяснил Бор, когда атом теряет энергию, испуская единичный фотон, энергия данного фотона должна быть равна разности энергий между первоначальным и окончательным состояниями атома – требование, благодаря которому частота этого фотона становится фиксированной. Всегда существует атомное состояние наиболее низкой энергии, при котором атом не может излучать и, следовательно, стабилен.
Вслед за этими первыми шагами в 1920-е гг. стали развиваться общие правила квантовой механики, которые могут быть приложимы к любой физической системе. В основном этой работой занимались Луи де Бройль, Вернер Гейзенберг, Вольфганг Паули, Паскуаль Йордан, Эрвин Шрёдингер, Поль Дирак и Макс Борн. Энергии разрешенных атомных состояний можно рассчитать, решив уравнение Шрёдингера. Это уравнение того общего математического типа, который уже появлялся при изучении звуковых и световых волн. Так же как струна музыкального инструмента может производить только те тона, для которых длина струны кратна целому числу половинок длин волны, так и Шрёдингер нашел, что доступные энергетические уровни атома исчерпываются теми, для которых волна, вычисляемая в уравнении Шрёдингера, целиком укладывается вокруг атома без разрывов непрерывности. Но, как это первым определил Бор, речь не идет о волнах давления или электромагнитных полях, а о волнах вероятности – частица, скорее всего, будет находиться около точки, где волновая функция наиболее велика.
Квантовая механика не только решила проблему стабильности атомов и природы спектральных линий, она также ввела химию в общий строй физики. Если знать электрические силы, действующие между электронами и ядрами атомов, то можно применить уравнение Шрёдингера к молекулам точно так же, как к атомам, и вычислить энергии их различных состояний. Таким образом, стало возможно определить, какие молекулы стабильны и какие химические реакции в принципе возможны с точки зрения энергии. В 1929 г. Дирак с ликованием заявлял: «Основные физические законы, необходимые для математических теорий большей части физики и всей химии, теперь полностью известны…» {288}
Это не означает, что химики скинули свои задачи на физиков и отправились на отдых. Как хорошо понимал Дирак, решение уравнения Шрёдингера для всех молекул, кроме самых маленьких, слишком сложно, поэтому особый инструментарий и специальные правила, используемые химиками, остаются совершенно необходимыми. Но начиная с 1920-х гг. пришло понимание того, что основные принципы химии, такие как правила о том, что металлы формируют стабильные соединения с галогенами, например, с хлором, таковы, какие они есть, из-за квантовой механики электронов и ядер атомов, связанных с помощью электромагнитных сил.
Несмотря на свою великую разъясняющую силу, это основание само по себе было далеко от того, чтобы стать унифицированным. Существовали частицы – электроны, а также протоны, нейтроны, из которых состоят ядра атомов. И существовали поля: электромагнитное поле и еще какие-то тогда неизвестные поля малого радиуса действия, которые предположительно отвечали за сильные взаимодействия, держащие части атомного ядра вместе, и слабые взаимодействия, которые превращают протоны в нейтроны и нейтроны в протоны в процессе радиоактивности. Это разделение между частицами и полями исчезло в 1930-е гг., после введения квантовой теории поля. Точно так же как существует электромагнитное поле, чья энергия и импульс объединяются в частицах, известных как фотоны, существует и поле электронов, чья энергия и импульс объединяются в электронах; также имеются и поля для других типов элементарных частиц.
Это было далеко не очевидно. Мы можем непосредственно наблюдать влияние гравитационного или электромагнитного поля, потому что кванты этих полей имеют нулевую массу и являются частицами того типа (известными как бозоны), которые в больших количествах могут иметь одно и то же состояние. Эти особенности позволяют огромному количеству фотонов накапливаться, чтобы сформировать то, что мы наблюдаем как электрические и магнитные поля, которые, как кажется, подчиняются законам классической (то есть не квантовой) физики. Электроны, напротив, имеют массу и являются частицами другого типа (известными как фермионы), в котором две одинаковые частицы не могут иметь одно и то же состояние – таким образом, поля электронов невозможно обнаружить при макроскопических наблюдениях.
В конце 1940-х гг. квантовая электродинамика, квантовая теория поля фотонов, электронов и антиэлектронов достигли потрясающих успехов – была вычислена сила магнитного поля электрона, причем вычисления совпадали с наблюдениями с точностью многих знаков после запятой {289}. Вслед за этим достижением было вполне естественно попытаться развить квантовую теорию поля, которая сосредоточила бы в себе не только фотоны, электроны и антиэлектроны, но и другие частицы, открытые в космических лучах и ускорителях, а также слабые и сильные силы, воздействующие на них.
Читать дальшеИнтервал:
Закладка: