Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
- Название:Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
- Автор:
- Жанр:
- Издательство:Литагент «БИНОМ. Лаборатория знаний»a493f192-47a0-11e3-b656-0025905a06ea
- Год:2015
- Город:Москва
- ISBN:978-5-9963-1368-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира краткое содержание
Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.
Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Простое определение симметрии как «соответствия левой и правой сторон» отражает более широкое определение: мы говорим, что объект обладает симметрией, если мы можем что-то сделать с ним, и после этой операции он не изменится. Если лицо симметрично, легко представить себе, что, отразив одну половинку лица относительно средней линии и приставив отраженную половинку к первой, получаем то же лицо. Но более простые объекты могут иметь и другие виды симметрии.
Возьмем простую геометрическую фигуру, например квадрат. Мы можем обе его половинки отражать относительно вертикальной оси, проведенной точно посередине, приставлять новые половинки к старым и получать в точности первоначальные фигуры – это одна симметрия. Мы можем то же самое проделать при отражении относительно горизонтальной оси, что свидетельствует еще об одной симметрии. (Этой симметрии нет у лица – даже самый красивый человек будет выглядеть странно, если поменять местами верхнюю и нижнюю половины его лица.) А еще мы можем отразить половину квадрата относительно диагонали, а также повернуть квадрат по часовой стрелке вокруг его центра на 90° или любой кратный угол. И при всех этих операциях получится прежний квадрат.

Круг, квадрат и загогулина. Круг имеет множество элементов симметрии, включая поворот на любой угол и отражение относительно любой оси. Симметрия квадрата ниже: он переходит сам в себя при поворотах на 90°, отражении относительно вертикальной и горизонтальной осей или комбинации этих операций. Загогулина вообще не имеет симметрии.
Круг, как и квадрат, выглядит очень симметричным, а на самом деле он еще более симметричный. Мы можем не только отразить его относительно любой оси, проходящей через центр, но и повернуть на любой заданный угол, и он всегда останется прежним кругом. Тут у нас гораздо больше свободы, чем было с квадратом. Произвольная кривая – загогулина – напротив, не имеет никакой симметрии вообще. При любой операции, которую мы с ней проделываем, ее вид меняется.
Симметрия – это способ сказать: «Мы можем изменить объект определенным образом, и ничего с ним существенного не произойдет». Повернем ли мы квадрат на 90° или отразим его относительно центральной оси, он превратится в тот же самый квадрат.
С этой точки зрения идея симметрии не выглядит чем-то полезным. Какое имеет значение, если мы повернули круг, кого это волнует? А волнует нас это по той причине, что симметрии достаточно высокого порядка накладывают очень сильные ограничения на то, что может случиться. Предположим, кто-то говорит вам: «Я нарисовал на листе бумаги фигуру с такой высокой симметрией, что вы можете повернуть рисунок на любой угол, и фигура будет выглядеть так же». И вы понимаете, что эта фигура должна быть кругом (или точкой, которая является вырожденным кругом с нулевым радиусом). Это единственная фигура с такой высокой симметрией. Аналогичным образом, когда речь идет о физике, мы часто можем понять, какой результат должен дать эксперимент, зная, какой должна быть основополагающая симметрия исследуемого процесса.
Классическим случаем проявления симметрии в физике является такой простой факт: не имеет значения, где мы проводим определенный эксперимент. Если он отражает основополагающие принципы, мы получим всегда один и тот же результат. Например, есть знаменитый эксперимент, в котором ученые (как правило, молодые, любящие выкладывать ролики на YouTube) кидают ментоловые пастилки в бутылку с диетической колой. Пористая структура ментоловых пастилок Mentos служит катализатором реакции высвобождения углекислого газа из соды, содержащейся в коле, что приводит к феерическому зрелищу – из бутылки начинает бить фонтан пены. Эффекта не будет, если взять любые другие ментоловые конфеты или другие содосодержащие напитки, но когда все ингредиенты выбраны правильно, эксперимент проходит с равным успехом и в Лос-Анджелесе, и в Буэнос-Айресе, и в Гонконге. Здесь нет симметрии природы по различным видам конфет или напитков, но есть симметрия по положению в пространстве. Физики называют это «трансляционной инвариантностью», – вот ведь никак не могут устоять перед соблазном дать сложное и отпугивающее название простой идее.
Когда рассматриваются частицы или поля, их симметрия говорит о том, что различные виды частиц способны меняться друг с другом или даже «превращаться друг в друга при поворотах». (Кавычки используются для того, чтобы показать, что мы здесь поворачиваем и превращаем друг в друга поля, а не направления в настоящем трехмерном пространстве, в котором мы живем.) Наиболее характерный пример – три вида цветных кварков, условно поименованные красными, зелеными и синими. Какой ярлык на каком кварке – совершенно не имеет значения: если перед вами три кварка, не важно, какой из них вы называете «красным», какой – «синим», а какой – «зеленым». Вы можете перевесить эти ярлычки, и все важные физические проявления останутся прежними – это симметрия в действии. Но если у вас имеется один кварк и один электрон, вам уже нельзя поменять их ярлычки. Кварк очень отличается от электрона – он имеет другую массу, другой заряд и ощущает сильное взаимодействие. Между ними нет симметрии.
Если бы не было поля Хиггса, наделяющего элементарные частицы массами, электроны, мюоны и тау-частицы были бы симметричными, поскольку эти частицы стали бы тогда идентичны во всех отношениях, так же, как симметричны мы с Анжелиной при пересечении пустой комнаты с одинаковой скоростью. При некотором взаимодействии мюон превратился бы в электрон, и все осталось бы в точности таким же. Мы могли бы даже (в соответствии с правилами квантовой механики) создать частицу, которая была бы наполовину электроном, а наполовину – мюоном, и опять бы ничего не изменилось. Или даже сделать некоторую комбинацию из трех частиц – некий аналог поворота круга на любой угол. Такая же симметрия есть у верхних, очарованных и истинных кварков, а также у тройки нижний-странный-прелестный кварки. Этим явлениям дано название – симметрия «ароматов», и даже несмотря на то, что поле Хиггса не позволяет наблюдать эту симметрию в природе в чистом виде, данное свойство широко используется физиками в теории элементарных частиц при анализе различных базовых процессов.
Но есть и другая симметрия, более глубокая и тонкая, чем симметрия ароматов. На первый взгляд полностью скрытая, она, как выяснилась, имеет абсолютно решающее значение. Это та симметрия, что лежит в основе слабых взаимодействий.
Поля связи и силы
Интервал:
Закладка: