Илья Рухленко - Что ответить дарвинисту? Часть II
- Название:Что ответить дарвинисту? Часть II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Илья Рухленко - Что ответить дарвинисту? Часть II краткое содержание
C современных научных позиций тотально критикуется эволюционное учение, основанное на дарвиновских механизмах.
Книга выполнена, в основном, в стиле практических советов людям, которые скептически относятся к современной теории эволюции, но при этом вынуждены вступать в словесные баталии с глубоко верующими дарвинистами. Подробно объясняется, что нужно отвечать верующим дарвинистам, если те озвучивают: 1) палеонтологические, 2) молекулярно-генетические, 3) сравнительно-анатомические, 4) эмбриологические, 5) биогеографические «доказательства эволюции».
Особенно подробно рассматриваются примеры наблюдаемой эволюции (потому что именно в таких случаях появляется возможность оценить, соответствуют ли механизмы, приводящие к изменениям, теоретическим положениям эволюционного учения). Наглядно показывается, что современный дарвинизм, по сути, основан на эмпирической пустоте: 1) все известные на сегодня примеры наблюдаемой эволюции недопустимо малочисленны; 2) большинство таких «примеров эволюции», на самом деле, не являются примерами эволюции; 3) в тех случаях, когда изменения организмов действительно происходят, дарвиновские механизмы оказываются вообще не при чём.
Помимо критики «доказательств эволюции», в книге рассматривается большое число фактов из разных областей биологии, которые либо плохо вписываются в концепцию естественной эволюции, либо вообще в неё не вписываются, и для объяснения таких фактов предлагаются разные варианты теории разумного замысла. Проводится анализ достоинств и недостатков теории разумного замысла в сравнении с теорией естественной эволюции. Делается вывод, что на сегодняшний день, концепция непрерывного творения успешно объясняет наибольшее число биологических фактов.
Что ответить дарвинисту? Часть II - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Более того, авторы исследования благоразумно рассудили, что даже нужную двойнуюмутацию (где сразу два конкретныхнуклеотида мутируют внутри одной бактерии) тоже вряд ли можно сразу получить методом полного перебора. Потому что такая двойная мутация (вероятность 10 -18) потребует количества бактерий (10 18особей), которое вряд ли можно насобирать в пределах воздействия нового антибиотика.
Поэтому авторы работы (Weinreich et al., 2006) решили посмотреть, можно ли получить из исходного немутантного гена, мутантный ген, несущий все 5нужных мутаций – с помощью цепочкииз пяти последовательных одинарных(нужных) мутаций.
То есть, они рассматривали вариант, когда одновременно происходит только одна единственная мутация (из пяти необходимых). И далее исследовали, смогли бы бактерии (в принципе) приобрести конечную устойчивость к новому антибиотику путем «пошагового» (постепенного) приобретения всех пяти мутаций, с величиной шага в одну единственную мутацию. Или не смогли бы. Действительно, это весьма интригующий вопрос. Ведь для того, чтобы естественный отбор последовательноподдержал все пять мутаций, каждая новая мутация, взаимодействуяс предыдущими мутациями, должна повышать, а не понижать устойчивость к новому антибиотику.
Например, одна из пяти мутаций, исследовавшихся в этой работе, не увеличивает, а наоборот, снижаетустойчивость к антибиотику, поскольку соответствующий фермент, получив эту мутацию, начинает разрушать данный антибиотик медленнее, чем без этой мутации. Зато эта мутация заметно повышает стабильность («время жизни») этого фермента в цитоплазме самой бактерии. Другая мутация приводит к тому, что соответствующий фермент начинает разрушать антибиотик быстрее. Но зато из-за этой мутации фермент становится менее стабильным (сам быстрее разрушается). А вот двойноймутант по только что озвученным мутациям – уже имеет резко повышенную устойчивость к антибиотику. Потому что соответствующий фермент (с этими двумя мутациями), с одной стороны, быстрее разрушает антибиотик, а с другой стороны, сам «живет» внутри бактериальной клетки дольше. Получается, что например, первая мутация вообще не сможет закрепиться в колонии бактерий до тех пор, пока бактерия не получит вторуюмутацию.
То есть, каждая из пяти мутаций определенным образомизменяет конформацию соответствующего белка (фермента, расщепляющего антибиотик). И теоретически, каждое такое изменение может либо «разрешить», либо, наоборот, «запретить» закрепление следующеймутации (вследствие отрицательного отбора).
Поэтому авторы исследования экспериментально проверили все возможные варианты, в каком порядке могли бы появляться 5 нужных одиночных мутаций. Число этих вариантов 120 (факториал из 5). И действительно, обнаружили несколькопутей (из возможных 120), с помощью которых каждая из 5 конкретных мутаций, возникая, повышалав той или иной степени устойчивость к антибиотику, пока, наконец, все 5 нужных мутаций не давали бактерии практически полную защиту от антибиотика (повышали устойчивость бактерии к цефотаксиму в 100 тысяч раз).
Таким образом, авторы работы (Weinreich et al., 2006) показали на практике, что метод «полного перебора» даже при величине «шага» всего в одну мутацию – можетприводить к весьма впечатляющим результатам, надежно защищая бактерий от непредсказуемых условий среды.
Правда, остался невыясненным вопрос, а что будет, если для достижения результата (возникновения полезного признака или свойства) нужно не 5 одновременных мутаций, а например, 20? Найдется ли в этом случае непрерывная «дорожка» из отдельных «шажков», каждый из которых будет повышать приспособленность? Или уже не найдется?
Впрочем, этот вопрос уже из области знаменитой «проблемы неуменьшаемой сложности» (Behe, 1996). То есть, из серии – а можно ли собрать паровоз путем постепенного присоединения к нему отдельных деталей таким образом, чтобы каждая деталь хотя бы немного повышала функциональность этого паровоза? Задаваться такими теоретическими вопросами мы здесь не будем. А лучше посмотрим, какие результаты и возможности демонстрируют нам сами бактерии, вооруженные методом «прямого перебора».
К сожалению, в целом эти результаты всё-таки не впечатляют. «Дорожка» из 5 мутаций, повышающих в итоге приспособленность в 100000 раз – это конечно круто. Но в большинстве реальных случаев, когда бактериям срочно необходимо к чему-нибудь приспособиться, дело обычно оканчивается всего одной(максимум, двумя) мутациями. И на этом этапе всё и останавливается. Причем в итоге получаются отнюдь не идеальные варианты, а как правило, уже известные нам «полезные поломки» . То есть, когда бактериям срочно нужно к чему-нибудь приспособиться, то подхватывается любая мутация, которая может помочь в этой ситуации. Но эта же мутация одновременно серьезно ухудшает что-нибудь другое. И в результате, такие бактерии, содержащие «полезную поломку», проигрывают в борьбе за выживание обычным («не поломанным») бактериям, как только условия среды возвращаются в нормальное русло. То есть, подобные «полезные поломки», полученные методом «грубой силы», можно рассматривать лишь как временныереакции бактерий на какие-то экстремальные возмущения среды. А потом «всё возвращается на круги своя» (и окружающая среда, и живущие в ней бактерии).
Например (допустим) какая-то бактерия использует специальный белок для активного транспорта внутрь собственной клетки какого-нибудь полезного для неё вещества. И тут Вы создаёте антибиотик, молекула которого похожа на это полезное вещество. В результате, бактерии начинают закачивать внутрь себя этот новый яд, и погибают. Однако у какой-то бактерии случилась «полезная поломка» – тот белок, который транспортировал полезное вещество через мембрану – мутировал. И в результате стал плоховыполнять свои функции. В обычных условиях такая бактерия – является калекой. Она будет расти и размножаться хуже своих соседок. Однако в условиях отравления антибиотиком, эта бактерия получает преимущество. Потому что все нормальные бактерии в этих условиях исправно накачивают себя ядом. А больная бактерия этого делать не может.
Вот такие «калеки» обычно и получаются в результате знаменитого «приспособления бактерий к антибиотикам» , о котором прожужжали все уши верующие дарвинисты, выдавая такие приспособления за «доказательства эволюции». То есть, те самые «супер-бактерии» из наших больниц, которыми нас так пугают свидетели Дарвина (будто бы эти бактерии настолько «эволюционировали», что стали устойчивы чуть ли не ко всем антибиотикам сразу)… на самом деле, в большинстве своем являются весьма серьезными калеками и инвалидами. И по этой причине в естественной среде не могут быть конкурентами обычным здоровым колониям исходных бактерий.
Читать дальшеИнтервал:
Закладка: