Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Тут можно читать онлайн Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Издательство «Питер»046ebc0b-b024-102a-94d5-07de47c81719, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
  • Автор:
  • Жанр:
  • Издательство:
    Издательство «Питер»046ebc0b-b024-102a-94d5-07de47c81719
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-496-01166-2
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной краткое содержание

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - описание и краткое содержание, автор Леонард Сасскинд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».

Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд. И эта увлекательная книга, переносящая читателя на передовую сражений в современной физике, – яркое тому подтверждение.

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - читать онлайн бесплатно ознакомительный отрывок

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Леонард Сасскинд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возникающая в результате слияния двух мезонов струна, как правило, оказывается в возбуждённом состоянии, включающем как вращательные, так и колебательные моды. Но спустя некоторое время струна, подобно цепи танцоров, распадается надвое, образуя на свободных концах кварк и антикварк. В итоге мы имеем процесс, в ходе которого две струны соединяются в одну, которая затем снова распадается надвое.

Задача которую я решил на чердаке формулировалась следующим образом - фото 51

Задача, которую я решил на чердаке, формулировалась следующим образом: предположим, что два мезона (две струны) до столкновения двигались с заданной энергией во встречных направлениях. Какова квантово-механическая вероятность того, что образовавшаяся после столкновения новая пара мезонов будет разлетаться в некотором заданном направлении? Задача выглядит ужасно сложной, и это просто математическое чудо, что она может быть решена.

Математическая задача описания идеального резинового шнура была решена ещё в начале XIX века. Колеблющуюся струну можно рассматривать как совокупность гармонических осцилляторов – по одному для каждого отдельного типа (моды) колебаний. Гармонический осциллятор – одна из немногих физических систем, которые могут быть полностью проанализированы с помощью очень простой математики уровня средней школы.

Добавить квантово-механическое описание, чтобы превратить струну в квантовый объект, тоже не составляет труда. Все, что необходимо помнить, – это что уровни энергии любой квантово-механической колебательной системы обладают дискретными значениями энергии (см. главу 1). Этих простых соображений достаточно, чтобы понять свойства одной колеблющейся струны, но описание двух взаимодействующих струн гораздо сложнее. Для этого мне пришлось разработать собственные правила с нуля, что сделало возможным локализовать сложное описание только для бесконечно малого времени, в течение которого происходит объединение струн. Как только это произойдёт, две струны снова становятся одной, описываемой простой математикой. Чуть позже струна рвётся, и этот процесс снова требует сложного описания, но опять же лишь для короткого промежутка времени. Таким образом, я сумел с большой точностью описать процесс объединения двух струн и последующего распада получившейся струны. Результат своих математических расчётов я сопоставил с уравнением Венециано, и они согласовались с идеальной точностью.

Барион представляет собой три струны, соединённые «звездой», мезон – одну открытую струну, но что такое глюбол? Начнём с цепочки танцоров. Допустим, танцоры, двигаясь в своём сложном танце, изогнули цепочку так, что два крайних танцора оказались рядом друг с другом. Не понимая, что они принадлежат к одной и той же цепочке, они могут взяться за руки. В результате получается замкнутый круг танцоров без свободных концов. То же самое может произойти и с колеблющимся мезоном. Предположим, что в процессе колебаний и вращений концы мезонной струны случайно оказались друг возле друга. Кварк на одном конце видит антикварк на другом и, не догадываясь, что его коллега принадлежит тому же самому мезону, хватает его, как змея собственный хвост. В результате получается глюбол: замкнутая струна, не имеющая на своих концах кварков. Большинство мезонов и барионов было известно задолго до создания теории струн, но глюболы были предсказаны ею, так сказать, с чистого листа. И если сегодня вы посмотрите на список известных частиц, то глюболы и их массы будут перечислены в нём наряду с барионами и мезонами.

Мезон превращается в глюбол Глюболы мезоны и барионы являются сложными - фото 52

Мезон превращается в глюбол

Глюболы, мезоны и барионы являются сложными объектами, которые могут вращаться и колебаться множеством способов. Например, струна, соединяющая концы мезона, может вибрировать, как пружина или даже как скрипичная струна; он может даже вращаться вокруг своей середины, растягиваясь под действием центробежной силы и образуя своеобразный адронный пропеллер. Эти возбуждённые состояния адронов соответствуют известным объектам, часть которых была обнаружена в экспериментах ещё в 1960-х.

Связь теории адронных струн с Законами Физики, и в частности с их формулировкой в терминах фейнмановских диаграмм, отнюдь не очевидна. Одним из способов визуализации теории струн является генерализация фейнмановских диаграмм путём замены точечных частиц струнами. Фейнмановские диаграммы состоят из основных элементов, которые мы уже рассматривали в главе 1: вершин и пропагаторов. Пропагаторы и вершины хороши для представления бесконечно малых точечных частиц квантовых полей. Например, вершина сама по себе является точкой, в которой сходятся траектории частиц. Если же сами частицы не являются точками, то не совсем понятно, что означает точка встречи их траекторий. Как же придать смысл пропагаторам и вершинам для струн? Когда мы имеем дело с точечной частицей , мы представляем её движение в виде линии в пространстве-времени. В каждый момент времени частица представляется точкой, но в результате движения эта точка разворачивается в кривую линию. Великий Минковский назвал траекторию движения частицы в пространстве-времени мировой линией , и этот термин прочно вошёл в науку.

Теперь представим себе как могла бы выглядеть история струны в - фото 53

Теперь представим себе, как могла бы выглядеть история струны в пространстве-времени. Возьмём замкнутую струну, не имеющую концов. В каждый конкретный момент времени такая струна будет представляться в пространстве замкнутой кривой. Представьте себе, что эту струну освещает стробоскоп. Во время первой вспышки мы увидим кольцо. При следующей вспышке мы увидим то же самое кольцо, только в другом месте. В конечном итоге мы увидим набор колец, отображающий последовательные положения струны.

Но в действительности время течёт непрерывно, и чтобы составить полную историю движения струны, нужно заполнить промежутки между её последовательными изображениями. В результате получится трубка, проходящая через пространство-время: двумерная цилиндрическая поверхность.

Размер кольца струны может изменяться со временем ведь струна способна - фото 54

Размер кольца струны может изменяться со временем, ведь струна способна сжиматься, растягиваться и колебаться. Временами она может даже самопересекаться, образуя подобие восьмёрки или принимая более сложные формы. В этом случае цилиндр окажется деформированным, но в нём всё ещё можно будет узнать цилиндр.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Леонард Сасскинд читать все книги автора по порядку

Леонард Сасскинд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной отзывы


Отзывы читателей о книге Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной, автор: Леонард Сасскинд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x