В. Рачков - Чудесные кристаллы
- Название:Чудесные кристаллы
- Автор:
- Жанр:
- Издательство:Воениздат
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Рачков - Чудесные кристаллы краткое содержание
Автор брошюры рассказывает о том, как было открыто пьезоэлектричество, какова физическая сущность этого явления, какими свойствами обладают пьезокристаллы.
В брошюре говорится об устройстве пьезоэлектрических приборов и их применении в различных областях науки и техники. Особое внимание уделено применению этих приборов в военном деле
Брошюра рассчитана на широкий круг читателей.
Чудесные кристаллы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Раньше глубину моря определяли обыкновенным тросом, на конце которого был прикреплен груз. Лот — так называлось это приспособление — опускался с борта корабля до соприкосновения груза с морским дном. По длине опускаемой части лота и судили о глубине моря.
Ясно, что такие измерения занимали очень много времени, особенно при больших глубинах моря. Точность определения глубины была чрезвычайно низка, так как за время опускания и подъема лота корабль сносило на значительное расстояние. Кроме того, при помощи лота нельзя было определять глубину на ходу корабля.
Всех этих недостатков лишен эхолот. Этот прибор похож на гидролокатор. Различие состоит в том, что ультразвуковой луч эхолота направлен вертикально вниз, к морскому дну. Как и у гидролокатора, пьезоэлектрический излучатель эхолота посылает ультразвуковые сигналы, а в паузах между посылками принимает отраженное от дна эхо (рис. 37, а).
Посылки производятся через определенные промежутки времени. Момент посылки регистрируется на специальной ленте, которая движется с постоянной скоростью. Отраженный от дна эхосигнал принимается, усиливается и также регистрируется на этой ленте (рис. 37, б). Чем больше расстояние между двумя отметками, тем больше глубина моря в той точке, где производилось измерение. На ленте нанесен специальный масштаб, а скорость движения пера, ставящего метки на бумаге в момент прихода эхосигналов, пропорциональна скорости распространения звука в воде. Ультразвуковой луч может нащупать малейшее изменение рельефа морского дна. Поэтому по записи на ленте определяют глубину моря.

При помощи эхолота в настоящее время составлены подробные карты морских глубин, по которым корабль может определить свое местоположение в море.
Точность работы эхолота достаточно велика: с его помощью, например, удалось обнаружить лежащий на дне большой океанский пароход «Лузитания», потопленный немецкой подводной лодкой во время первой мировой войны. На рис. 38 приведена лента с записью эхолота. На фоне ровного профиля морского дна четко вырисовывается силуэт корабля с надстройками.

Эхолот с успехом применяется в рыбном промысле. Установлено, что рыбы отражают ультразвук. Это дает возможность при помощи эхолота обнаруживать в море или океане косяки рыб.
Ранее уже упоминалось, что рыбы погибали от ультразвука. Но те опыты проводились в бассейне с мощными источниками ультразвука, действующего на рыб на небольшом расстоянии в течение длительного времени. Рыбам в море такая опасность не грозит.
ЕЩЕ ОДНО ЧУДЕСНОЕ СВОЙСТВО
Замечательные свойства пьезокристаллов обусловили их широкое применение и в ряде других отраслей, например в радиолокации.
В основу радиолокации положен тот же принцип, что и в гидролокации, т. е. принцип отражения эхо-сигналов. Только здесь применяются уже не ультразвук, а радиоволны. Они излучаются передатчиком и при помощи антенны узким пучком направляются в пространство. В паузах между излучениями к антенне подключается приемник, который усиливает отраженные от целей радиоволны и направляет их в индикатор. В индикаторе принятые сигналы просматриваются на экранах электронно-лучевых трубок, а по времени прихода отраженных сигналов определяется расстояние до цели (рис. 39).

Так коротко можно объяснить работу радиолокатора. Однако за каждым названием отдельных узлов радиолокационной станции, таких, как передатчик, индикатор и другие, скрыты тысячи разнообразных и остроумных устройств и деталей. И все они работают в строго согласованном порядке. Такое согласование в радиолокации называется синхронизацией, а прибор, согласующий работу отдельных блоков и устройств, — синхронизатором.
Синхронизатор — это «командир» радиолокационной станции (рис. 40). Без его «приказа» не начнет работать ни одно устройство. На остановку работы того или иного блока также требуется «разрешение» синхронизатора.
«Приказы» синхронизатора представляют собой электрические сигналы, следующие друг за другом с чрезвычайно постоянной частотой. Стоит лишь немного измениться частоте следования этих сигналов, как работа всей станции нарушится.
Как же создать такое постоянство, или, как чаще говорят, стабильность частоты следования электрических сигналов?

На помощь пришло пьезоэлектричество. Оказалось, что наиболее эффективным из всех способов повышения стабильности частоты является кварцевая стабилизация, а точнее — стабилизация при помощи кварцевых резонаторов.
Прежде всего вспомним основные законы колебательного движения. Для этого обратимся к обыкновенному маятнику — небольшому грузику, подвешенному на качающемся стержне или нитке. Достаточно слегка качнуть его, как начнутся постепенно затухающие колебания. Частота таких колебаний зависит только от размеров маятника и называется собственной.
Почему колебания затухают? Куда расходуется энергия, которую мы сообщили грузику, толкнув его? Ответ прост: на трение и преодоление сопротивления движению маятника со стороны окружающей среды. Встречая эти силы при своем движении, маятник постепенно, порцию за порцией, отдает весь сообщенный ему запас энергии — колебания затухают, маятник останавливается.
Подобно маятнику колебательной системой является тонкая кварцевая пластинка, снабженная электродами. Однако по сравнению с любым маятником кварцевая пластинка представляет собой куда более совершенную колебательную систему. Маятник после толчка может еще колебаться десятки раз. А если заставить колебаться кварцевую пластинку, то она проделает сотни тысяч колебаний, прежде чем израсходует свою энергию.
Но что самое примечательное: собственная частота пластинки при этом остается строго постоянной, даже если ее нагревать или охлаждать.
Например, если нагреть пластинку на один градус, частота изменится всего лишь на одну стотысячную долю процента. Вот почему для стабилизации частоты используется пьезокварц. Благодаря своим упругим свойствам, высокой температурной и химической устойчивости кварцевая пластинка наиболее совершенна из всех колебательных систем.
Читать дальшеИнтервал:
Закладка: