Александр Вологдин - Земля и жизнь
- Название:Земля и жизнь
- Автор:
- Жанр:
- Издательство:Недра
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Вологдин - Земля и жизнь краткое содержание
Известный советский палеонтолог А. Г. Вологдин рассказывает в своей книге, как развивалась жизнь на Земле в различные эпохи и периоды, как века и тысячелетия изменяли растительный и животный мир Земли. В книге использованы новейшие научные данные, полученные автором при изучении органических остатков древнейших геологических эпох.
Земля и жизнь - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так жизнь как энергетический процесс стала на Земле неотделимой от минерального вещества, стала неотъемлемой частью природы, планетарным явлением. Подчиняясь до известного предела условиям среды своего развития, она вносила, как вносит и теперь, часто значительные изменения в состав и свойства среды. Жизнь расширила круг химических процессов на Земле, добавив к нему огромное разнообразие биохимических реакций. Жизнь с самого начала стала осуществлять разнообразную огромную и все увеличивающуюся породообразующую геологическую работу. Она стала играть все большую роль в формировании пород, ландшафтов и самой среды.
По мнению Г. Лиса, первичные организмы, обитавшие в условиях атмосферы, содержавшей углекислоту и лишенной кислорода, в средах, бедных органическими веществами, могли иметь источником жизненной энергии только свет. Поэтому этот исследователь полагал, что первыми живыми существами на Земле были фотосинтезирующие организмы, которые жили в анаэробных условиях, пока в результате того же фотосинтеза не создался в биосфере и запас кислорода и органических веществ. Следует отметить, что хлорофилл, зеленый компонент живого вещества фотосинтезирующих организмов, по своей конструкции стоит на уровне аминокислот и потому мог быть действительно одним из древнейших белковых соединений в природе.
Фотосинтезирующие бактерии имеют в своем составе красящие вещества - пигменты, близкие к хлорофиллу растений. У бактерий, выращенных в темноте, эти пигменты не образуются. Бактериальный хлорофилл представляет собой различные близкие по составу пигментирующие вещества, каждое из которых, свойственно соответствующим группам бактерий - пурпурным, серным и несерным, зеленым серобактериям и др. Схема процесса фотосинтеза у таких бактерий имеет следующий вид:
Фотосинтезирующие бактерии выделяют в составе среды не молекулярный кислород, а группы ОН. Это приводит к окислению в среде их обитания некоторых восстановительных веществ - сероводорода, серы водорода. Как мы отмечали, водородом древняя биосфера была богата.
Как пишет Г. Лис: "...автотрофные бактерии могут быть охарактеризованы как организмы, которые могут жить, расти и размножаться в среде, где единственным источником углерода служит углекислота, и для конструктивного обмена которых не требуется готового органического вещества... Гетеротрофные организмы к этому не способны, поскольку для ид развития требуется присутствие по крайней мере одного органического вещества, например какого-либо сахара или аминокислоты. Гетеротрофные организмы нуждаются в органических веществах не только как в материале для роста, но и как в источнике энергии. Рост и развитие этих организмов регулируются количеством энергии, получаемой при усвоении нужного им органического вещества. Между тем автотрофные бактерии проявляют свою жизнедеятельность, используя световую энергию или энергию, получаемую ими при преобразовании неорганических веществ".
Вот некоторые пути получения энергии (по Г. Лису).
Окисление сероводорода до элементарной серы в присутствии кислорода: H2S+O = H2O + S + 172 кДж
Окисление элементарной серы в присутствии кислорода: H2O+S+3O = H2SO4 = 496 кДж
Окисление азотистой кислоты в азотную: HNO2+O = HN03 + 71 кДж
Окисление водорода: Н2+O = Н2O + 235 кДж.
Световая энергия -6*1023 квантов красного света дает автотрофу 40 ккал энергии.
Для сравнения мы можем привести энергетический эффект усвоения гетеротрофными бактериями глюкозы:
С2Н12О6 + 6О2 = 6СО2 + 6Н2О + 2900 кДж.
Из этого сравнения отчетливо виден значительно более высокий уровень химического развития "пищевого" вещества гетеротрофов сравнительно с автотрофами. Получаемый в последнем случае огромный энергетический эффект не мог иметь места на самом раннем этапе существования организмов и мог развиться лишь в процессе длительной эволюции живого вещества в биосфере при последовательном усложнении химической структуры веществ, включаемых в сферу биологических процессов. Способность вырабатывать эфиры, нектар, масла, сахара растениями могла возникнуть и развиться лишь в ходе длительной эволюции растительного живого вещества природы. Отсюда естественно представлять развитие жизни от первичных преимущественно автотрофных организмов к преимущественно гетеротрофным, от анаэробных форм жизни, не нуждающихся в свободном кислороде, к более высокоорганизованным анаэробным же и к аэробным, требующим кислорода для своей жизнедеятельности.
Форма и абсолютные размеры тела живого организма играют решающую роль в его отношениях со средой. При этом определяющим фактором является поверхность тела, осуществляющая обмен веществ.
Произведем некоторый расчет. Представим себе кубик с ребром в 1 см. Будем дробить его на кубики меньшего размера и при соответственно большем их количестве попробуем подсчитать их суммарную поверхность:
1 кубик с ребром в 1 см - 600 мм2;
1 тыс. кубиков с ребром в 1 мм - 6 тыс. мм2;
1 млн. кубиков с ребром в 0,1 мм - 600 тыс. мм2;
1 млрд. кубиков с ребром в 0,01 мм - 60 млн. мм2;
1000 млрд. кубиков с ребром в 0,001 мм - 6 млрд. мм2, или 600 м2.
Таким образом, если мы имеем дело, например, с бактериями размером около 0,001 мм (1 микрон!) в поперечнике, то оказывается, что 1 см3 такого бактериального вещества имеет суммарную поверхность связи со средой 600 м2! Таким образом, у бактерий, если выразиться техническим языком, коэффициент полезного действия оболочки и самого вещества оказывается весьма низким. Живые существа с более высокой организацией имеют иное отношение к среде, выражающееся, в частности, большими размерами и иной конфигурацией тел.
Форма живого тела, его размер и конфигурация в пространстве теснейшим образом связаны с содержанием, со свойствами и количеством органического вещества, осуществляющего жизненные функции особи - единицы жизни. Поэтому совершенно ясно, что первичной формой при возникновении жизни на Земле была каплеобразная сфероидальная, имевшая сверхмикроскопические размеры, до 1 μ. Малые размеры тела - результат естественного отбора - составляли преимущество этих первичных организмов, унаследованное затем всем миром бактерий и зародышевой стадией более высокоорганизованных существ. Таким образом, первичная сфероидальная клетка стала основной первичной стадией индивидуального развития всех живых существ Земли.
Важное свойство любого природного тела - его электрический заряд, возникающий на границе сред. Он есть у падающей капли дождя, у пылинки, плавающей в воздухе и в воде, он есть у бактерии, находящейся в жидкой среде. У тел неживой природы заряд способен возникать и исчезать, но знак его не меняется. У живых же организмов, от самых простейших их представителей до высших, электрический заряд создается ими самими и их определяет; в момент гибели особи заряд теряется.
Читать дальшеИнтервал:
Закладка: