Лэнс Фотноу - Золотой билет
- Название:Золотой билет
- Автор:
- Жанр:
- Издательство:Лаборатория знаний
- Год:2016
- Город:Москва
- ISBN:978-5-00101-424-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лэнс Фотноу - Золотой билет краткое содержание
«Золотой билет» – великолепное введение в P/NP-проблему, в котором описаны история этой задачи и ее влияние на нашу жизнь. В этой информативной и занимательной книге Лэнс Фортноу прослеживает работу, которая велась над задачей во времена холодной войны по обе стороны «железного занавеса», и приводит примеры ее возникновения во множестве дисциплин, включая экономику, физику и биологию.
Для студентов и специалистов в области теории вычислений, всех, интересующихся современными проблемами в математике.
В формате pdf A4 сохранен издательский дизайн.
Золотой билет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В результате система придет в квантовое состояние, представляющее собой совокупность приблизительно из 3 × 10 150(т. е. 3 и 150 нулей) групп, часть которых отмечены как клики. Если мы научимся эффективно «вытаскивать» из квантовых состояний информацию о кликах, то получим быстрый квантовый алгоритм для поиска клики, а также для всех остальных NP-полных задач. Считывая квантовое состояние системы (т. е., в некотором роде, наблюдая за окончанием игры), мы видим лишь один исход, в данном случае – одну группу жителей; маловероятно, что именно эта группа окажется кликой.
Нам нужно научиться как-то выделять искомые клики, чтобы при считывании квантового состояния они попадались нам с большей вероятностью. Сделать это можно при помощи квантовых манипуляций с кубитами. Правда, при грубом подходе манипуляций потребуется столько же, сколько и групп, т. е. примерно 3 × 10 150, и все преимущества квантовых вычислений будут сведены на нет. В 1996 году сотрудник Лабораторий Белла в Нью-Джерси Лов Гровер разработал «умный» квантовый алгоритм, который мог обнаружить клику в Королевстве «всего» за 2 × 10 75квантовых шагов. Однако даже при скорости триллион операций в секунду на это ушло бы в пять раз больше времени, чем живет наша вселенная.
Уже доказано, что при решении NP-полных задач на квантовом компьютере алгоритм Гровера в общем случае дает наилучший результат, поэтому квантовые алгоритмы вряд ли позволят приравнять классы P и NP. Если физики когда-нибудь и построят полноценные квантовые компьютеры, самые трудные проблемы все равно окажутся им не по зубам.
Это, конечно, не означает, что от квантовых компьютеров не будет никакого толку. С их помощью мы сможем эффективно эмулировать нетривиальный жизненный цикл различных наносистем и постепенно приоткроем завесу над тайнами вселенной. А еще квантовые компьютеры помогут нам решить некоторые NP-задачи, с которыми обычные компьютеры за разумное время не справляются.
В 1994 году другой сотрудник Лабораторий Белла, Питер Шор, придумал, как на квантовом компьютере можно быстро выполнять факторизацию, т. е. раскладывать число на простые множители (к примеру, для числа 16461679220973794359 тут же выяснилось бы, что 16461679220973794359 = 5754853343 × 2860486313). При наличии мощного квантового компьютера алгоритм Шора спокойно работал бы с числами из сотен и даже тысяч знаков. Для поиска делителей алгоритм строит алгебраические конструкции, с которыми квантовые компьютеры справились бы очень легко. Современным машинам такая задача не под силу, а вот квантовые могли бы эффективно факторизовывать сколь угодно большие числа. К сожалению, хорошие алгебраические конструкции для NP-полных задач пока не придумали, поэтому для них алгоритм Шора работать не будет.
Разумеется, прежде чем реализовывать какой-нибудь квантовый алгоритм, нужно создать полноценный квантовый компьютер. Для решения особо трудоемких задач, перед которыми пасуют даже самые мощные современные машины, понадобятся системы из десятков тысяч запутанных кубитов; связи между кубитами должны сохраняться в течение нескольких секунд, пока с ними проводятся квантовые преобразования. К сожалению, эти связи очень хрупкие и легко обрываются. Малейшее взаимодействие с внешней средой способно вызывать у кубитов состояние считывания, разрушить отдельные связи и исказить весь процесс вычисления.
Создать абсолютно – или хотя бы относительно – устойчивую систему даже из двух запутанных кубитов физикам пока не удалось. Ученые-кибернетики разработали специальные методы квантовой коррекции ошибок, которые позволяют строить алгоритмы, способные корректно работать с довольно приличным количеством связей. А вот как поддерживать все эти многочисленные связи в системе хотя бы из двух десятков кубитов, мы пока не знаем. Не исключено, что большие запутанные квантовые системы просто обязаны разрушаться через некоторое время, подчиняясь законам природы; с другой стороны, проблема может носить и чисто технический характер. Будем надеяться, физики с этим когда-нибудь разберутся.
Существуют и другие способы организовать вычисления при помощи квантовых явлений: это адиабатические процессы и квантовый отжиг. Впрочем, они тоже обладают целым рядом технических и мощностных ограничений. Канадская компания D-Wave заявила о создании адиабатических компьютеров, однако ученые пока не уверены, что они работают лучше обычных.
Если мы даже и построим мощные квантовые компьютеры, они все равно будут довольно узко специализированы. Для разложения чисел на множители и эмуляции физических систем они, конечно, подойдут; с их помощью можно будет взламывать шифры и разгадывать тайны вселенной, однако они не дадут нам ключ к решению NP-полных задач и не заставят Excel работать быстрее.
Квантовая криптография
Большинство рассмотренных в предыдущей главе алгоритмов шифрования базируются на предположении, что задача факторизации является вычислительно трудной. Если же под рукой у вас имеется квантовый компьютер, то любой из этих шифров взламывается алгоритмом Шора, раскладывающим числа на множители. Конечно, пока это только фантазия, которая, однако, имеет все шансы превратиться в реальность. Для защиты от квантовых криптографических атак можно было бы попытаться разработать новые протоколы шифрования, основанные на особо трудоемких задачах, не укладывающихся в «любимые» квантовыми компьютерами алгебраические структуры. Однако ученые придумали другой способ: шифрование при помощи квантовой механики.
Возможность копировать данные воспринимается нами как должное. Функции копирования и вставки сейчас есть почти в каждой программе. Мы можем сохранить один и тот же файл в разных папках и на разных машинах, можем создать резервную копию данных на жестком диске или в облаке. Иногда все эти многочисленные экземпляры нам даже мешают – очень трудно, к примеру, удалить свои персональные данные и электронный адрес так, чтобы о них больше не осталось ни единого упоминания.
А вот квантовые биты копированию не поддаются. Ведь чтобы скопировать кубит, его нужно хотя бы частично измерить, т. е. выполнить наблюдение, которое сразу превратит его в обычный бит с двумя значениями. Предположим, Джордж отсылает Гарри кубит информации, а Эрик его перехватывает. Если Эрик попытается скопировать или прочитать кубит, тот сразу же примет вид обычного бита. Безопасность обеспечена, вот только для организации переписки этого явно недостаточно: ведь когда Гарри начнет читать сообщение, он тоже увидит лишь обычный бит.
В 1979 году в Пуэрто-Рико проходила важнейшая международная конференция по проблемам теоретической информатики – IEEE Symposium on Foundations of Computer Science . Среди участников был Жиль Брассард из Монреальского университета. Когда он после очередного заседания плескался в океане, его разыскал Чарльз Беннет. Знакомство вылилось в плодотворное сотрудничество; вместе ученые придумали, как при помощи квантовых битов можно создавать системы шифрования с доказуемой криптостойкостью. Допустим, Джордж отсылает Гарри длинную последовательность кубитов, содержащую секретный ключ для шифрования дальнейшей переписки. Любой злоумышленник, перехвативший это сообщение, разрушит все кубиты, как только попытается их прочитать или скопировать. Беннет и Брассард разработали метод, позволяющий при помощи дополнительного обмена информацией по квантовым и классическим каналам либо успешно передать секретный ключ, либо установить, что сообщение было скомпрометировано (в этом случае можно попытаться еще раз).
Читать дальшеИнтервал:
Закладка: