Коллектив авторов - Концепции современного естествознания. Учебное пособие
- Название:Концепции современного естествознания. Учебное пособие
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Концепции современного естествознания. Учебное пособие краткое содержание
Естествознание исследует мир таким, какой он существует в своем естественном состоянии, не зависимом от сознания человека
Концепции современного естествознания. Учебное пособие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
4. Неклассическая физика. Специальная теория относительности
Описывая логику создания специальной теории относительности, Альберт Эйнштейн в совместной с Л. Инфельдом книге пишет: «Соберем теперь вместе те факты, которые достаточно проверены опытом, не заботясь больше о проблеме эфира:
1) скорость света в пустом пространстве всегда постоянна независимо от движения источника или приемника света;
2) в двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение…
Первое положение выражает постоянство скорости света, второе обобщает принцип относительности Г. Галилея, сформулированный для механических явлений, на все происходящее в природе» [7] Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. С. 145–146.
. А. Эйнштейн отмечает, что принятие этих двух принципов и отказ от принципа галилеевского преобразования, т. к. он противоречит постоянству скорости света, и положили начало специальной теории относительности. К принятым двум принципам (постоянства скорости света и эквивалентности всех инерциальных систем отсчета) А. Эйнштейн добавляет принцип инвариантности всех законов природы по отношению к преобразованиям Г. Лоренца. Поэтому во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Г. Лоренца. Это значит, что ритм движущихся часов и длина движущихся стержней зависят от скорости: стержень сократится до нуля, если его скорость достигнет скорости света, а ритм движущихся часов замедлится, часы совершенно остановились бы, если бы они могли двигаться со скоростью света.
Так из физики были элиминированы ньютоновское абсолютное время, пространство, движение, которые были как бы независимы от движущихся тел и их состояния.
5. Общая теория относительности
В цитируемой уже книге А. Эйнштейн спрашивает: «Можем ли сформулировать физические законы таким образом, чтобы они были справедливы для всех систем координат, не только для систем, движущихся прямолинейно и равномерно, но и для систем, движущихся совершенно произвольно по отношению друг к другу?» [8] Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. С. 176.
. И отвечает: «Это оказывается возможным» [9] Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. С. 176.
.
Потеряв в специальной теории относительности свою «независимость» от движущихся тел и друг от друга, пространство и время как бы «нашли» друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 г. работу «Основания теории электромагнитных процессов», в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику. С этой новой позиции А. Эйнштейн рассмотрел закон тяготения И. Ньютона. Вместо силы тяготенияон стал оперировать полем тяготения.Поля тяготения были включены в пространственно-временной континуум как его «искривление». Метрика континуума стала неевклидовой, «римановской» метрикой. «Кривизна» континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света, проходящего вблизи Солнца.
Так из физики было элиминировано понятие «инерциальной системы координат» и обосновано утверждение обобщенного принципа относительности: любая система координат является одинаково пригодной для описания явлений природы.
6. Квантовая механика
Вторым, по мнению лорда Кельвина (У. Томсона), недостающим элементом для завершения здания физики на рубеже XIX–XX в. было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории оно должно быть непрерывным, континуальным.Однако это приводило к парадоксальным выводам вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 г. гипотезу, что вещество не может излучать или поглощать энергию, иначе как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта)
E = h × п,
где п – частота излучения;
h – универсальная константа.
Гипотеза М. Планка была использована А. Эйнштейном для объяснения фотоэффекта. А. Эйнштейн ввел понятие кванта света, или фотона. Он же предложил, что светв соответствии с формулой М. Планка обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 г. было открыто еще одно явление, подтверждающее существование фотонов, – эффект А. Х. Комптона.
В 1924 г. Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи.Отсюда можно говорить и о волновых свойствах электрона, например о дифракции электрона, которые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с «обстрелом» электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, т. е. точно определить его координату, а с другой стороны – не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.
Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.
Объяснение «неклассического» поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы – к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:
Δх × ΔР x ≥ h,
Читать дальшеИнтервал:
Закладка: