Анатолий Клёсов - Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке
- Название:Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке
- Автор:
- Жанр:
- Издательство:Литагент Неформат
- Год:2016
- Город:Москва
- ISBN:978-5-8041-0842-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Клёсов - Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке краткое содержание
Эта книга для тех, кто хочет разобраться в базовых понятиях ДНК-генеалогии. Но вместо того, чтобы объяснять «гладким текстом», как в учебниках, автор объясняет эти понятия на конкретных примерах заблуждений и путем ответов на вопросы. Восприятие так происходит значительно лучше. Заинтересованный читатель должен также представлять, кто и как умышленно перекореживает, фальсифицирует, передергивает вполне ясные положения ДНК-генеалогии и ее выводы.
ДНК-генеалогия вовсе не подменяет собой исторические науки, и такой задачи не ставит. Она выявляет новые данные, которые ранее не были известны. Таким образом, ДНК-генеалогия вместе с историками, археологами, лингвистами, этнологами воссоздает более правильную картину древнего мира. В итоге жанр книги оказался необычным. Это и учебник ДНК-генеалогии, и серия иллюстраций о достижениях ДНК-генеалогии, о ее открытиях и находках за последние годы, и срывание масок с лжецов и провокаторов, которым ДНК-генеалогия откровенно мешает.
Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Итак, если читатель не хочет разбираться в деталях, то на этом этапе можно резюмировать, что если исследователи сообщают, что анализируют (в поисках снипов) фрагменты Y-хромосомы в 10 миллионов нуклеотидов, то там на самом деле может быть восемь с половиной миллионов нуклеотидов, и если при этом считать, что скорость снип-мутации составляет именно 0.8178 × 10 -9на нуклеотид в год, то одна снип-мутация происходит раз в 144 года. На деле там, конечно, погрешность более чем солидная.
Но это еще не всё, и погрешность часто еще значительно больше. Дело в том, что снип-мутации происходят не через равные промежутки времени, а неупорядоченно. Если при этом рассматриваются цепочки снипов протяженностью десятки и сотни тысяч лет, то это аналогично рассмотрению ситуации с сотнями бросков монеты, и погрешности из-за неупорядоченности нивелируются. Но для относительно недавних снипов метод расчета очень неточный. Например, если снип образовался 750 лет назад, то в цепочке нисходящих снипов их всего 750/144 = 5 снипов, и погрешность определения времени образования, согласно формулам математической статистики, не меньше ±46 % (с 68 %-ной достоверностью) или ±92 % (с 95%ной достоверностью). В итоге погрешности у большинства датировок по снипам в таблице значительно более высокие, чем у датировок по мутациям в гаплотипах, которые будут рассматриваться ниже.
Есть еще серьезная проблема – в расчетах компании YFull часто игнорируют фактическое количество снипов, и ставят ту датировку, которая им представляется более правильной, «по понятиям». При этом они всегда постулируют, что при разветвлении снипов они образовались точно в одно и то же время, хотя это события совершенно независимые. По аналогии, если у отца двое сыновей, то их возраст далеко не всегда одинаковый, один мог родиться, когда отцу было 18 лет, другой – когда отцу было 70 лет. Такой постулат, «о равенстве возраста сыновей» часто приводит к ситуациям, когда к одному снипу от вышестоящего ведет 5 мутаций (в среднем 720 лет), к другому 20 мутаций (в среднем 2880 лет), а YFull записывает их «возраст» как одинаковый, либо 720, либо 2880 лет, выбор датировки фактически произвольный. В итоге получаются несуразные датировки.
Примеры – в переходе R1a-Y35 > YP7278 зафиксировано 9 промежуточных снипов (это приведено в таблице на сайте YFull), что соответствует 1300 лет разницы, однако датировка для обоих снипов, родительского и нисходящего, приведена как одинаковая, 4300 лет назад. В переходе CTS3402 > CTS2613 зафиксировано 17 промежуточных снипов (2450 лет разницы), однако датировка для обоих снипов в списке YFull – одинаковые 4300 лет назад, вместо 1850 лет назад для нисходящего, как должно быть (и как дает более точная датировка по гаплотипам). И так в таблицах YFull повторяется десятки и сотни раз.
Приходится на этом столь подробно останавливаться, потому что в последнее время усиленно распространяется легенда, что расчеты по снипам – значительно более точные, чем любыми другими методами. Историки могут принять эту легенду за чистую монету, и опять повторится ситуация последних 15 лет, когда практически все расчеты популяционными генетиками, опубликованные в академических журналах, были кардинально искажены, с завышениями до 300–400 %. Для расчетов на времена удаленные, как правило, более 5-10 тысяч лет назад, и тем более на 100–200 тысяч лет назад, когда число снип-мутаций исчисляется многими сотнями, расчеты по снипам действительно могут оказаться полезными, но вводимые постулаты, как равенство датировок для «параллельных» снипов, опять сводит эту пользу к нулю, если не к отрицательным величинам.
Так что да, я весьма критически отношусь к расчетам датировок по снипам, если они не подтверждены перекрестными расчетами с использованием других методов, например, по мутациям в гаплотипах, о чем речь пойдет ниже. Но часто бывает, что другие методы непригодны, или нет соответствующих гаплотипов. Тогда приходится принимать то, что есть. Но часто бывает, что совпадение расчетов по снипам и гаплотипам вполне удовлетворительное. Это придает уверенность, что в принципе подход, основанный на числе снипов, правильный, но он нуждается в доработке.
Здесь надо сказать, что попгенетики опять в своем амплуа – Балановский уже провозгласил, что метод расчетов по снипам самый точный, и ненавистные ему расчетные подходы ДНК-генеалогии можно отставить. Это опять было провозглашено без какого-либо исследования, и единственная статья, в которой Балановский этот метод использовал, дала неверные результаты. Дело в том, что Балановский в своей манере выхватил из многих вариантов лишь одну скорость мутации – 122 года на снип, без малейшего ее обоснования или проверки, и опять получил неверные датировки [15] Underhill, P.A., Poznik, G.D., Rootsi, S., Jarve, M., Lin, A.A., Wang, J., Passarelli, B., Kanbar, J., Myres, N.M., King, R.J., Cristofaro, J.D., Sahakyan, H., Behar, D.M., Kushniarevich, A., Sarac, J.S., Saric, T., Rudan, P., Pathak, A.K., Chaubey, G., Grugni, V., Semino, O., Yepiskoposyan, L., Bahmanimehr, A., Farjadian, S., Balanovsky, O., Khusnutdinova, E.K., Herrera, R.J., Chiaroni, J., Bustamante, C.D., Quake, S.R., Kivisild, T., Villems, R. (2015) The phylogenetic and geographic structure of Y-chromosome haplogroup R1a. European Journal of Human Genetics 23, 124–131.
.
Вопрос 14: Что такое гаплотип, и откуда получают те числа, которые показаны при записи гаплотипов?
Эти числа называются «аллели», и показывают, сколько раз определенная (относительно короткая) последовательность нуклеотидов повторяется в Y-хромосоме ДНК человека. Например, такая последовательность: аденин-гуанин-аденин-тимин, или в сокращенном виде АГАТ, или, как чаще записывают, AGAT. Участок Y-хромосомы, в котором имеет место такой повтор, который еще называют «тандемным повтором», четко определен, и носит название DYS393 (DYS означает DNA Y-chromosome Segment, то есть “сегмент Y-хромосомы ДНК). Каждый из таких участков ДНК называется «маркером», и таких маркеров в Y-хромосоме человека примерно 2500.
В моем гаплотипе, приведенном выше, как и в гаплотипах обоих киргизов, это – первое число, равное 13. Это записывается как DYS393=13, и означает, что у всех нас в данном маркере четверка AGAT повторяется 13 раз. Вот так:

и эти повторы обрамляются уже неупорядоченными последовательностями нуклеотидов в ДНК, как показано выше.
Второе число, аллель в маркере DYS390, у нас троих у всех разное, у меня 24, у одного из упомянутых киргизов 25, у другого – 26. Это – суммарное число повторов других тандемных четверок, а именно TCTG, то есть тимин-цитозин-тимин-гуанин, и ТСТА, тимин-цитозин-тимин-аденин.

В данном случае четверка, TCTG переходит в четверку TCTA, и число повторов складывается.
Читать дальшеИнтервал:
Закладка: