Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок
- Название:Ритм Вселенной. Как из хаоса возникает порядок
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-388-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок краткое содержание
Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.
На русском языке публикуется впервые.
Ритм Вселенной. Как из хаоса возникает порядок - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.
Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.
Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.
Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она предполагает, что запуск одного осциллятора всегда подталкивает другие осцилляторы в направлении порога, продвигая таким образом их фазы вперед; реальные биологические осцилляторы могут, вообще говоря, сдвигать фазу как вперед (опережение), так и назад (запаздывание). Кроме того, тайские светлячки, которые являются самыми большими мастерами в части синхронизации – вид, известный как Pteroptyx malaccae , – используют совершенно другую стратегию [16] Экспериментальные свидетельства разных стратегий перенастройки, используемых светлячками, изложены в статье Frank E. Hanson, “Comparative studies of firefly pacemakers,” Federation Proceedings 37 (1978), 2158–2164. Цель нашей математической модели никогда не заключалась в том, чтобы обеспечить большую реалистичность в этом отношении. Мы лишь хотели доказать правильность гипотезы Пескина и ссылались на светлячков как на самый наглядный пример этой абстракции, концепцию импульсно-связанных осцилляторов. Описание гораздо более достоверной с биологической точки зрения модели синхронизма светлячков можно найти в статье G. Bard Ermentrout, “An adaptive model for synchrony in the firefly Pteroptyx malaccae.” Journal of Mathematical Biology 29 (1991), pp. 571–585.
: они непрерывно корректируют частоту своих «внутренних часов», а не их фазу, в ответ на сторонние вспышки. По сути, они заставляют свои «внутренние часы» тикать быстрее или медленнее, вместо того чтобы переводить свою минутную стрелку немного вперед или назад. К тому же, предполагая, что все осцилляторы идентичны, наша модель не принимает во внимание генетическое разнообразие, присущее любой реальной популяции. И наконец, наше допущение, что все осцилляторы оказывают одинаковое воздействие друг на друга, является очень грубым описанием клеток сердца, которые влияют главным образом на своих ближайших соседей. Учитывая все эти ограничения нашего анализа, мы оказались не готовы к реакции, которую он должен был вызвать с неизбежностью.
В течение нескольких следующих лет было опубликовано более 100 статей, посвященных импульсно-связанным осцилляторам. Авторами этих статей были ученые, представлявшие множество дисциплин, начиная с нейробиологии и заканчивая геофизикой. Что касается нейробиологии, то теоретиков, изучающих модели нейронных сетей, категорически не устраивал преобладающий подход, согласно которому нейроны весьма грубо описывались средними скоростями их запуска (количеством скачков напряжения в секунду), а не фактическим распределением самих этих скачков во времени [17] Одной из ранних работ, посвященных этому вопросу, была статья L. F. Abbott and C. van Vreeswijk, “Asynchronous states in neural networks of pulse-coupled oscillators,” Physical Review E 48 (1993), pp. 1483–1490.
. Предложенная нами новая модель импульсно-связанных осцилляторов идеально отвечала потребностям ученых-нейробиологов и духу времени в целом.
По случайному стечению обстоятельств или, может быть, в силу каких-то других причин в начале 1990-х годов ученые в других областях также размышляли над поведением систем такого рода. Например, влиятельный биофизик Джон Хопфилд, работающий в Калифорнийском технологическом институте, обнаружил связь между землетрясениями и импульсно-связанными нейронами [18] John J. Hopfield, “Neurons, dynamics, and computation,” Physics Today 47 (1994), pp. 40–46; A. V. M. Herz and J. J. Hopfield, “Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements,” Physical Review Letters 75 (1995), pp. 1222–1225.
. В упрощенной модели землетрясения пласты земной коры постоянно воздействуют друг на друга, создавая напряжение, которое нарастает до тех пор, пока не будет достигнут некий порог. Затем эти пласты внезапно начинают скользить относительно друг друга; высвобождающаяся при этом энергия приводит к взрыву. Весь этот процесс напоминает постепенное повышение и внезапный скачок напряжения нейрона. В описанной выше модели землетрясения соскальзывания одного пласта может оказаться достаточно, чтобы запустить соскальзывание других пластов (точно так же, как запуск нейрона может вызвать цепную реакцию других разрядов в мозге). Эти каскады множащихся событий могут приводить к землетрясениям (или эпилептическим хватательным движениям у человека). В зависимости от того, какой именно оказывается конфигурация других элементов системы, результатом может быть либо едва различимый гул, либо сильное землетрясение.
Интервал:
Закладка: