Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок

Тут можно читать онлайн Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент МИФ без БК, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок краткое содержание

Ритм Вселенной. Как из хаоса возникает порядок - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.
Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.
На русском языке публикуется впервые.

Ритм Вселенной. Как из хаоса возникает порядок - читать онлайн бесплатно ознакомительный отрывок

Ритм Вселенной. Как из хаоса возникает порядок - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими инструментами биологи в то время, как правило, не пользовались.

Когда Уинфри размышлял над проблемой группового синхронизма, он думал о самих осцилляторах, а не просто об их частотах [39] Самая ранняя его работа по групповому синхронизму, опубликованная в 1965 г., основывалась на эксперименте с массивом из 71 мигающей неоновой лампочки, которые электрически были соединены друг с другом. Уинфри называл такое приспособление «светлячковой машиной». Он писал, что его цель заключается в том, чтобы «просто посмотреть, как все это будет происходить»; см. главу 11, The Geometry of Biological Time. Вскоре он понял, что компьютерное моделирование обеспечивает гораздо большую гибкость, контроль и удобство интерпретации. Результаты этих исследований описаны в статье Arthur T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical Biology 16 (1967), pp. 15–42, на которой базируется остальной материал этого раздела. . В этом отношении его концептуализация данной проблемы была гораздо более подробно разработанной, чем у Винера. Он не просто характеризовал каждый осциллятор частотой, на которой тот работает (его местоположением на политическом спектре, если вернуться к нашей предыдущей аналогии), а изображал его работу шаг за шагом, на протяжении всего цикла, что является, в конце концов, самым существенным для каждоно осциллятора. Это сразу же привело к сложностям, которые заставили бы опустить руки любого другого – только не Уинфри [40]. Преимущество молодости в том и состоит, что в эту пору жизни для вас нет почти ничего невозможного.

Свою модель он совершенно сознательно сделал приблизительной. Он намеревался сделать ее достаточно общей, чтобы ее можно было применить к любой популяции биологических осцилляторов. Единственым способом охватить одной моделью типичные характеристики стрекочущих сверчков, мерцающих светлячков, пульсирующих нейронов, задающих ритм, и тому подобных объектов было не обращать внимания на все их биохимические различия, а вместо этого сосредоточиться исключительно на двух вещах, типичных для всех биологических осцилляторов: их способности отправлять и принимать сигналы.

Запутанность этой проблемы обусловлена тем, что оба указанных свойства изменяются в течение цикла осциллятора: влияние и чувствительность являются функциями фазы. Например, цикл светлячка состоит из внезапной вспышки, затем следует интервал темноты (пока светлячок перезаряжает орган, который обеспечивает свечение), затем следует очередная вспышка и т. д. Эксперименты показали, что светлячки на приемном конце замечают вспышку другого светлячка, но игнорируют темноту. Поэтому в математическом описании, предложенном Уинфри, «функция влияния» должна изменяться в промежутке между двумя уровнями: высоким во время вспышки и близким к нулю во время темноты. Аналогично «функция чувствительности» показывает, как осциллятор реагирует на принимаемые им сигналы. Увидев вспышку в течение одной части своего цикла, светлячок может ускорить работу своего внутреннего таймера. Увидев точно такую же вспышку в течение какой-либо другой части цикла, светлячок может замедлить работу своего внутреннего таймера или вообще не влиять на его работу. Чтобы полностью охарактиризовать любой осциллятор в своей модели, Уинфри было достаточно использовать эти две функции. Выбрав эти две функции, можно было определить поведение осциллятора и как отправителя, и как получателя сигналов.

Чтобы сделать эти идеи как можно более конкретными, представим осциллятор в виде бегуна трусцой, бегущего по круговой дорожке стадиона. Разные места на этой дорожке представляют разные фазы цикла биологической активности осциллятора. Если дорожка представляет, например, менструальный цикл, то одна из ее точек соответствовала бы овуляции. Другая, соответствующая примерно половине длины дорожки, соответствовала бы менструации, а места между этими двумя точками соответствовали бы промежуточным гормональным событиям. После совершения одного круга бегун снова вернулся бы в точку овуляции. Или, если такая дорожка должна представлять ритм мерцания светлячка, разные ее места означали бы свечение как таковое, сопровождаемое разными стадиями биохимического восстановления, в ходе которого орган, отвечающий за свечение этого насекомого, перезаряжается и готовится к своему очередному свечению.

Если следовать подобной логике, то два связанных осциллятора будут похожи на двух бегунов, которые во время бега постоянно обмениваются между собой командами. Что именно они кричат друг другу и насколько громко они произносят эти слова, определяется их текущими местоположениями на дорожке: эта информация заключена в функции влияния, предложенной Уинфри. Если, например, величина функции влияния одного бегуна в данный момент мала и положительна, он кричит другому бегуну: «Беги, пожалуйста, немного быстрее». С другой стороны, высокое отрицательное значение функции влияния означает: «Ты бежишь слишком быстро. Помедленнее, пожалуйста!» А нулевое значение функции влияния вообще ничего не означает для партнера. С течением времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.

Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).

Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ритм Вселенной. Как из хаоса возникает порядок отзывы


Отзывы читателей о книге Ритм Вселенной. Как из хаоса возникает порядок, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x