Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок

Тут можно читать онлайн Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент МИФ без БК, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок краткое содержание

Ритм Вселенной. Как из хаоса возникает порядок - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.
Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.
На русском языке публикуется впервые.

Ритм Вселенной. Как из хаоса возникает порядок - читать онлайн бесплатно ознакомительный отрывок

Ритм Вселенной. Как из хаоса возникает порядок - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.

На протяжении многих лет мне не удавалось добиться хоть какого-то успеха в решении проблемы устойчивости. Однажды поздно вечером, в момент, когда я уже был готов погрузиться в сон, у меня в голове мелькнула неожиданная идея: а что, если осцилляторы похожи не на бегунов, а на молекулы в жидкости! Точно так же как вода состоит из триллионов дискретных молекул, эта воображаемая «осцилляторная жидкость» должна состоять из триллионов дискретных точек, бегущих по окружности [45].

Вообще говоря, родившийся в моей голове образ должен был выглядеть еще более сложно и необычно. Мне нужно было вообразить множество разных жидкостей, по одной для каждой частоты, представленной в соответствующем распределении частот. Точнее говоря, бесконечно большое число разных частот, подобно сочетанию цветов в радуге. Поэтому я нарисовал в своем воображении радугу цветных жидкостей, причем все они «завихряются» вокруг одной и той же окружности, никогда не смешиваясь между собой, поскольку осцилляторы никогда не меняют свою естественную частоту. Преимущество этой психоделической картины заключается в том, что некогерентность становится единственным состоянием. Таким образом, я имею дело уже не с бесконечно большим семейством, а лишь с одним состоянием однородной плотности, причем каждая цветная жидкость равномерно распределена по всей окружности.

Я буквально выскочил из постели, схватил карандаш и бумагу. В голове засыпающего человека чаще всего возникают всевозможные фантастические картины, но идея, родившаяся в моей голове, казалась мне очень близкой к тому, что имеет место в реальности. Первым делом мне нужно было адаптировать законы механики жидкостей к моей воображаемой «осцилляторной жидкости». Затем я составил уравнения для создания стандартного теста на устойчивость: вывести систему из равновесия, решить уравнения для соответствующих возмущений (эти уравнения имеют решение, поскольку они линейны, даже если исходная система не является линейной) и проверить, нарастают ли эти возмущения или, наоборот, сходят на нет.

Составленные мною уравнения показали, что ответ зависит от того, насколько подобны между собой осцилляторы. Я нашел, что в случае, если они идентичны или почти идентичны, возмущения нарастают по экспоненциальному закону по мере того, как осцилляторы сближаются между собой по фазе, образуя зачаточную форму синхронизма. Затем родилась формула, описывающая скорость экспоненциального роста (аналогичная процентной ставке, определяющей скорость приращения суммы на вашем банковском счете). Никто до меня такой формулы не смог предложить. Это был точный прогноз, правильный или неправильный – другое дело. Наутро мне предстояло проверить свои догадки на компьютере.

У меня вспотели ладони, когда я, строка за строкой, проводил свои вычисления. Все работало! Я наблюдал рождение порядка. Затем я ненадолго остановился. Существует ли интервал критических частот, в котором скорость нарастания падает до нуля, а некогерентность уже не является неустойчивой? Да, такое критическое состояние возникает при достижении такого же порога, который был обнаружен Курамото. Это выглядело весьма убедительно. Итак, я нашел новый способ вычисления фазового перехода – точки замерзания, при которой впервые наступает синхронизация.

Через несколько часов после восхода солнца я позвонил своему сотруднику Ренни Миролло, чтобы соотщить ему приятную новость. Я начал описывать свои соображения относительно «осцилляторной жидкости», но он быстро прервал меня: «К чему вся эта софистика?» Будучи «чистым» математиком, он никогда не изучал механику жидкостей и доверял лишь уравнениям, не прибегая к помощи воображения. Мои вычисления казались ему весьма сомнительными. Но я был уверен в своей правоте. Несколько позже в тот же день я вернулся к себе в офис и убедился в том, что предсказанные мною скорости нарастания идеально совпадали с результатами компьютерного моделирования. Ренни быстро заключил мир с «осцилляторной жидкостью».

Вместе с Ренни мы решили вопрос устойчивости некогерентного состояния по другую сторону порога, где интервал частот достаточно большой, аналогично температурам выше точки замерзания. Мы ожидали, что некогерентность должна теперь стать устойчивой. Но вместо этого уравнения указывали на то, что она «нейтрально устойчива» – очень редкий, пограничный случай, когда переходные возмущения ни нарастают, ни затухают.

Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ритм Вселенной. Как из хаоса возникает порядок отзывы


Отзывы читателей о книге Ритм Вселенной. Как из хаоса возникает порядок, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x