Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок
- Название:Ритм Вселенной. Как из хаоса возникает порядок
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-388-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок краткое содержание
Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.
На русском языке публикуется впервые.
Ритм Вселенной. Как из хаоса возникает порядок - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
32
Анонимный автор, “Olfactory synchrony of menstrual cycles,” Science News 112 (July 2, 1977), p. 5. Оригинальный материал был опубликован спустя три года; см. статью M. J. Russell, G. M. Switz, and K. Thompson, “Olfactory influences on the human menstrual cycle,” Pharmacology Biochemistry and Behavior 13 (1980), pp. 737–738.
33
Kathleen Stern and Martha K. McClintock, “Regulation of ovulation by human pheromones,” Nature 392 (1998), pp. 177–179. Работа Макклинток, касающаяся менструального синхронизма и феромонов человека, остается весьма спорной. В статье Martha K. McClintock, “Whither menstrual synchrony?” Annual Review of Sexual Research 9 (1998), pp. 77–95, Макклинток выступает с энергичной защитой своего мнения. См. также увлекательный и познавательный материал на эту тему в популярной книге Natalie Angier, Woman: An Intimate Geography (New York: Houghton Mifflin, 1999), pp. 170–175. Автор этой книги характеризует Макклинток как «женщину, которая носит яркие шарфы поверх кашемировых свитеров, необычные украшения, сизо-серые носки с изображениями черных рыб и излучает неизбывный энтузиазм».
34
Norbert Wiener, Cybernetics, 2 ndedition (Cambridge, Massachusetts: MIT Press, 1961). (Русский перевод: Н. Винер. Управление и связь в животном и машине. Новые главы кибернетики. М.: Советское радио, 1963.)
35
Обзор научных достижений Винера и небольшую подборку забавных случаев из его жизни можно найти в книге Pest R. Masani, Norbert Wiener 1894–1964 (Vita Mathematics, vol. 5), (New York Springer-Verlag, 1990).
36
В последней главе книги Cybernetics излагаются представления Норберта Винера об альфа-ритме мозговых волн и приводятся его рассуждения о самоорганизации в других системах связанных осцилляторов. (Он полагал, что это имеет какое-то отношение к вирусам, генам и раковым заболеваниям.) Более раннее изложение этих проблем, имеющее более технический характер, можно найти в книге Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958). (Русский перевод: Н. Винер. Нелинейные задачи в теории случайных процессов. М.: ИЛ, 1961.)
37
Спектр с двойным «проседанием» воспроизведен по диаграмме на стр. 69 книги Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958).
38
«Не отваживаясь высказываться…» Cybernetics, стр. 201
39
Самая ранняя его работа по групповому синхронизму, опубликованная в 1965 г., основывалась на эксперименте с массивом из 71 мигающей неоновой лампочки, которые электрически были соединены друг с другом. Уинфри называл такое приспособление «светлячковой машиной». Он писал, что его цель заключается в том, чтобы «просто посмотреть, как все это будет происходить»; см. главу 11, The Geometry of Biological Time. Вскоре он понял, что компьютерное моделирование обеспечивает гораздо большую гибкость, контроль и удобство интерпретации. Результаты этих исследований описаны в статье Arthur T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical Biology 16 (1967), pp. 15–42, на которой базируется остальной материал этого раздела.
40
Для читателей, сведущих в математике или физике: возможно, вас интересует, что нового и необычного было в задаче, которую сформулировал для себя Уинфри; в частности, чем она отличается от всего того, что нам рассказывали в университетах о связанных осцилляторах. Нужно помнить, что задачи, излагаемые в учебниках, исходят из того, что осцилляторы линейны (то есть они являются простыми гармоническими осцилляторами) и связаны между собой линейными взаимодействиями (например, с помощью пружин, которые подчиняются закону Гука). В этом простом случае динамические характеристики определяются в явном виде по методу нормальных режимов. Однако Уинфри понимал, что такой подход был бы неприменим к данной биологической задаче, поскольку биологические осцилляторы не линейны. В отличие от своих линейных аналогов, которые могут совершать колебания с любой амплитудой, большинство биологических осцилляторов обязательно регулируют свою амплитуду; следовательно, лучше всего моделировать их как нелинейные самоподдерживающиеся осцилляторы с устойчивым предельным циклом. В середине 60-х годов наличная математическая теория таких объектов заканчивалась на системах из двух или трех связанных осцилляторов с предельным циклом. Никто не имел ни малейшего понятия об их популяциях , особенно если их частоты были распределены случайным образом по всей популяции. К тому же нужно понимать, что такие осцилляторы не следует путать с консервативными нелинейными осцилляторами (например, ангармоническими осцилляторами, используемыми в молекулярной динамике). Такие осцилляторы запасают энергию и могут иметь любую амплитуду – что, опять-таки, является недопустимым предположением, когда речь идет о моделировании биологических самоподдерживающихся осцилляторов.
41
На языке статистической физики, Уинфри выполнял аппроксимацию «среднего поля».
42
Введение в нелинейные дифференциальные уравнения можно найти в книге Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Cambridge, Massachusetts. Perseus Boob, 1994).
43
Оригинальным материалом – предельно краткой заметкой – является статья Y. Kuramoto, “Self-entrainment of a population of coupled nonlinear oscillators,” опубликованная в материалах международного симпозиума International Symposium on Mathematical Problems in Theoretical Physics , под ред. H. Araki (Springer-Verlag: Lecture Notes in Physics, vol. 39, 1975), pp. 420–422. Более полезная интерпретация приведена в книге Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Berlin: Springer-Verlag, 1984). Обзор этой модели и ее математический анализ, который будет полезен преподавателям, приведен в статье Steven H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143 (2000), pp. 1–20.
44
Введение в ее труды, посвященные связанным осцилляторам в применении к нейробиологии, можно найти в статье Nancy Kopell, “Toward a theory of modelling central pattern generators,” помещенной в сборнике Neural Control of Rhythmic Movement in Mrtebrates, под ред. A. H. Cohen, S. Rossignol, and S. Griilner (New York: John Wiley, 1988), pp. 369–413.
45
Steven H. Strogatz and Renato E. Mirolio, “Stability of incoherence in a population of coupled oscillators,” Journal of Statistical Physics 63 (1991), pp. 613–635.
46
Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, “Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,” Physical Review Letters 68 (1992), pp. 2730–2733.
47
Lev Landau, “On the vibrations of the electronic plasma,” Journal of Physics USSR 10 (1946), pp. 25–34. (То же на русском языке: Л. Ландау, О колебаниях электронной плазмы // ЖЭТФ 16, 574 (1946).) Элементарное введение в демпфирование Ландау можно найти в статье David Sagan, “On the physics of Landau damping,” American Journal of Physics 62 (1994), pp. 450–462.
48
Isaac Asimov, Asimov’s Biographical Encyclopedia of Science and Technology (Garden City, New York: Doubleday, 1972), p. 723.
49
Джон Дэвид Кроуфорд – блестящий ученый, занимающийся прикладной математикой. Причиной его ранней смерти стало заболевание раком. Составить некоторое представление о его выдающихся работах по связанным осцилляторам и плазме можно, ознакомившись, например, с такими статьями: John David Crawford, “Amplitude expansions for instabilities in populations of globally-coupled oscillators,” Journal of Statistical Physics 74 (1994), pp. 1047–1084, и “Amplitude equations for electrostatic waves: Universal singular behavior in the limit of weak instability,” Physics of Plasmas 2 (1995), pp. 97–128.
Читать дальшеИнтервал:
Закладка: