Дмитрий Поспелов - Моделирование рассуждений. Опыт анализа мыслительных актов

Тут можно читать онлайн Дмитрий Поспелов - Моделирование рассуждений. Опыт анализа мыслительных актов - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Радио и связь, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Дмитрий Поспелов - Моделирование рассуждений. Опыт анализа мыслительных актов краткое содержание

Моделирование рассуждений. Опыт анализа мыслительных актов - описание и краткое содержание, автор Дмитрий Поспелов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.

Для широкого круга читателей.

Моделирование рассуждений. Опыт анализа мыслительных актов - читать онлайн бесплатно полную версию (весь текст целиком)

Моделирование рассуждений. Опыт анализа мыслительных актов - читать книгу онлайн бесплатно, автор Дмитрий Поспелов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы все сказанное стало понятнее, рассмотрим конкретный пример. На рис. 26 показана серия изображений, соответствующая пропорции Лейбница, в которой, как всегда, надо восстановить недостающее звено, т.е. осуществить (если это возможно) вывод по аналогии. Для описания изображений введем языки картинка 167картинка 168 2. В языке картинка 169 1в качестве элементов возьмем изображение солнца s , и человечка m . В качестве отношений будем рассматривать отношения R 1– «быть слева вверху» и R 2– «быть справа вверху». Тогда ситуация А может быть описана как sR 1 m . В качестве операций в картинка 170 1будем использовать перестановку объектов относительно друг друга O 1и вращение на 180° по часовой стрелке O 2. Тогда преобразование F можно описать как O 1( s , m ); O 2( m ). В результате этого возникает ситуация B , описание которой в языке 1выглядит как sR 2 O 2 m Рис 26 Введем теперь элементы языка 2 Это - фото 171 1выглядит как sR 2( O 2( m )).

Рис 26 Введем теперь элементы языка 2 Это луна l и фантастическое животное - фото 172

Рис. 26.

Введем теперь элементы языка картинка 173 2. Это луна l и фантастическое животное q . В качестве отношений, используемых в картинка 174 2, возьмем снова отношения RR 2, а в качестве операций картинка 175 2сохраним операции OO 2языка картинка 176 1. Описание А’ выглядит следующим образом: lR 1 q . Для получения описания В’ установим между А и А’ отношение взаимно однозначного соответствия H , например, так, что имеют место взаимно однозначные соответствия s картинка 177 l и m картинка 178 q . Тогда sR 1 m картинка 179 lR 1 q и А картинка 180 А’ . Преобразование F’ в наших предположениях совпадает с F . Значит, В и В’ должны находиться также во взаимно однозначном соответствии. Но В есть sR 2( O 2( m )). Учитывая соответствие между элементами картинка 181картинка 182 2, выводим описание для В’ : lR 2( O 2( q )).

Рассмотренная процедура носит общий характер. Можно строго доказать, что если в пропорции Лейбница А , А’ и В описаны с помощью алгебраического языка, использующего лишь двуместные отношения, задан характер преобразований F и установлено взаимно однозначное соответствие между картинка 183картинка 184 2, то описание В’ также возможно на языке картинка 185 2и существуют взаимно однозначные соответствия F картинка 186 F’ и В картинка 187 В’ , так что, применяя к А преобразование F и к А’ преобразование F’ , получаем В и В’ , такие, что В картинка 188 В’ .

Заметим, что из этого утверждения вытекает, что необходимым условием для возможности рассуждений по аналогии с использованием пропорции Лейбница служит требование коммутативности ее диаграммы. Требование коммутативности диаграммы означает, что описание В’ , полученное из A с помощью F и взаимно однозначного соответствия H’ , ничем не отличается от описания В’ , полученного из A с помощью взаимно однозначного соответствия H и последующего применения к этому результату преобразования F’ . С требованием коммутативности диаграмм мы еще столкнемся в последующих разделах этой главы.

Несмотря на все сказанное, полное описание модели рассуждений по аналогии всё еще не получено, так как пропорция Лейбница явно не исчерпывает всех случаев рассуждений подобного типа. Да и в случае, когда мы имеем дело действительно с пропорцией Лейбница, остаются нерешенными по крайней мере два вопроса: как построить языки картинка 189картинка 190 2и как установить взаимно однозначное соответствие между ними. Возможные в этом случае трудности иллюстрирует рис. 27. На этом рисунке показаны ситуации А и А’ . Ситуация А может быть описана следующим текстом: «Ромео любит Джульетту. Джульетта любит Ромео (на рис. 27 это отношение R 1). Ромео мужчина ( R 2). Он итальянец ( R 3). Джульетта женщина ( R 4). Она красива ( R 5). Она не замужем ( R 6)». Ситуация А’ может быть описана следующим текстом: «Тристан любит Изольду. Изольда любит Тристана ( R 1). Тристан мужчина ( R 2). Он бретонец ( R * 2). Изольда женщина ( R 4). Она красива ( R 5). Она замужем ( R * 6). Ее муж – король Марк ( R 7)».

Рис 27 Готовы ли мы признать описанные две ситуации аналогичными И должен ли - фото 191

Рис. 27.

Готовы ли мы признать описанные две ситуации аналогичными? И должен ли Тристан действовать так же, как Ромео? Из соответствующих литературных произведений мы знаем, что развитие ситуации А было таково, что оно привело к совместной смерти Ромео и Джульетты. А Тристан и Изольда имели другую судьбу. Почему это произошло? И можно было бы это формально установить в процессе сравнения ситуаций А и А’ ? Ведь во второй ситуации имелся король Марк, а различное число отношений заведомо не позволяло установить взаимно однозначное отношение между их описаниями. Но может быть вместо изоморфизма (т.е. взаимно однозначного отношения) для картинка 192картинка 193 2достаточно какого-нибудь гомоморфизма?

Этот вопрос пока остается без ответа. Поэтому ограничимся лишь тем, что для рассуждений по аналогии можно считать твердо установленным. В следующем разделе попытаемся объединить то, что нам уже известно об индуктивном методе Милля и рассуждениях по аналогии.

ДСМ-метод

Сокращение ДСМ, вынесенное в название метода, означает Джон Стюарт Милль. Оно показывает, что метод поиска закономерностей по множествам положительных и отрицательных примеров, к описанию которого мы переходим, опирается на методы индукции, предложенные этим ученым. Их реализация в виде комплекса действующих программ на ЭВМ выполнена современными исследователями.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дмитрий Поспелов читать все книги автора по порядку

Дмитрий Поспелов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Моделирование рассуждений. Опыт анализа мыслительных актов отзывы


Отзывы читателей о книге Моделирование рассуждений. Опыт анализа мыслительных актов, автор: Дмитрий Поспелов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x